Search (18 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Citation indexing"
  • × theme_ss:"Informetrie"
  1. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.05
    0.04641738 = product of:
      0.13925214 = sum of:
        0.13925214 = sum of:
          0.09762162 = weight(_text_:conference in 201) [ClassicSimilarity], result of:
            0.09762162 = score(doc=201,freq=8.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.50272834 = fieldWeight in 201, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
          0.041630525 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
            0.041630525 = score(doc=201,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.23214069 = fieldWeight in 201, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
      0.33333334 = coord(1/3)
    
    Abstract
    Research patterns could enhance understanding of the Information Systems (IS) field. Citation analysis is the methodology commonly used to determine such research patterns. In this study, the citation methodology is applied to one of the top-ranked Information Systems conferences - International Conference on Information Systems (ICIS). Information is extracted from papers in the proceedings of ICIS 2000 to 2002. A total of 145 base articles and 4,226 citations are used. Research patterns are obtained using total citations, citations per journal or conference, and overlapping citations. We then provide the citation ranking of journals and conferences. We also examine the difference between the citation ranking in this study and the ranking of IS journals and IS conferences in other studies. Based on the comparison, we confirm that IS research is a multidisciplinary research area. We also identify the most cited papers and authors in the IS research area, and the organizations most active in producing papers in the top-rated IS conference. We discuss the findings and implications of the study.
    Date
    3. 1.2007 17:22:03
  2. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.02305716 = product of:
      0.03458574 = sum of:
        0.020708898 = weight(_text_:retrieval in 5171) [ClassicSimilarity], result of:
          0.020708898 = score(doc=5171,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.13368362 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.013876842 = product of:
          0.027753685 = sum of:
            0.027753685 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.027753685 = score(doc=5171,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  3. Larsen, B.: Exploiting citation overlaps for information retrieval : generating a boomerang effect from the network of scientific papers (2002) 0.02
    0.020708898 = product of:
      0.062126692 = sum of:
        0.062126692 = weight(_text_:retrieval in 4175) [ClassicSimilarity], result of:
          0.062126692 = score(doc=4175,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.40105087 = fieldWeight in 4175, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=4175)
      0.33333334 = coord(1/3)
    
  4. Nicolaisen, J.: Citation analysis (2007) 0.02
    0.018502457 = product of:
      0.05550737 = sum of:
        0.05550737 = product of:
          0.11101474 = sum of:
            0.11101474 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.11101474 = score(doc=6091,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    13. 7.2008 19:53:22
  5. Garfield, E.: From citation indexes to informetrics : is the tail now wagging the dog? (1998) 0.02
    0.017083969 = product of:
      0.051251903 = sum of:
        0.051251903 = weight(_text_:retrieval in 2809) [ClassicSimilarity], result of:
          0.051251903 = score(doc=2809,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.33085006 = fieldWeight in 2809, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2809)
      0.33333334 = coord(1/3)
    
    Abstract
    Provides a synoptic review and history of citation indexes and their evolution into research evaluation tools including a discussion of the use of bibliometric data for evaluating US institutions (academic departments) by the National Research Council (NRC). Covers the origin and uses of periodical impact factors, validation studies of citation analysis, information retrieval and dissemination (current awareness), citation consciousness, historiography and science mapping, Citation Classics, and the history of contemporary science. Illustrates the retrieval of information by cited reference searching, especially as it applies to avoiding duplicated research. Discusses the 15 year cumulative impacts of periodicals and the percentage of uncitedness, the emergence of scientometrics, old boy networks, and citation frequency distributions. Concludes with observations about the future of citation indexing
  6. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.016354015 = product of:
      0.049062043 = sum of:
        0.049062043 = product of:
          0.09812409 = sum of:
            0.09812409 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.09812409 = score(doc=3925,freq=4.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 15:22:28
  7. Brooks, T.A.: How good are the best papers of JASIS? (2000) 0.01
    0.014643403 = product of:
      0.043930206 = sum of:
        0.043930206 = weight(_text_:retrieval in 4593) [ClassicSimilarity], result of:
          0.043930206 = score(doc=4593,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.2835858 = fieldWeight in 4593, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4593)
      0.33333334 = coord(1/3)
    
    Abstract
    A citation analysis examined the 28 best articles published in JASIS from 1969-1996. Best articles tend to single-authored works twice as long as the avergae article published in JASIS. They are cited and self-cited much more often than the average article. The greatest source of references made to the best articles is from JASIS itself. The top 5 best papers focus largely on information retrieval and online searching
    Content
    Top by numbers of citations: (1) Saracevic, T. et al.: A study of information seeking and retrieving I-III (1988); (2) Bates, M.: Information search tactics (1979); (3) Cooper, W.S.: On selecting a measure of retrieval effectiveness (1973); (4) Marcus, R.S.: A experimental comparison of the effectiveness of computers and humans as search intermediaries (1983); (4) Fidel, R.: Online searching styles (1984)
  8. Aström, F.: Changes in the LIS research front : time-sliced cocitation analyses of LIS journal articles, 1990-2004 (2007) 0.01
    0.012202835 = product of:
      0.036608502 = sum of:
        0.036608502 = weight(_text_:retrieval in 329) [ClassicSimilarity], result of:
          0.036608502 = score(doc=329,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.23632148 = fieldWeight in 329, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=329)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on articles published in 1990-2004 in 21 library and information science (LIS) journals, a set of cocitation analyses was performed to study changes in research fronts over the last 15 years, where LIS is at now, and to discuss where it is heading. To study research fronts, here defined as current and influential cocited articles, a citations among documents methodology was applied; and to study changes, the analyses were time-sliced into three 5-year periods. The results show a stable structure of two distinct research fields: informetrics and information seeking and retrieval (ISR). However, experimental retrieval research and user oriented research have merged into one ISR field; and IR and informetrics also show signs of coming closer together, sharing research interests and methodologies, making informetrics research more visible in mainstream LIS research. Furthermore, the focus on the Internet, both in ISR research and in informetrics-where webometrics quickly has become a dominating research area-is an important change. The future is discussed in terms of LIS dependency on technology, how integration of research areas as well as technical systems can be expected to continue to characterize LIS research, and how webometrics will continue to develop and find applications.
  9. White, H.D.: Citation analysis : history (2009) 0.01
    0.012202835 = product of:
      0.036608502 = sum of:
        0.036608502 = weight(_text_:retrieval in 3763) [ClassicSimilarity], result of:
          0.036608502 = score(doc=3763,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.23632148 = fieldWeight in 3763, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3763)
      0.33333334 = coord(1/3)
    
    Abstract
    References from publications are at the same time citations to other publications. This entry introduces some of the practical uses of citation data in science and scholarship. At the individual level citations identify and permit the retrieval of specific editions of works, while also suggesting their subject matter, authority, and age. Through citation indexes, retrievals may include not only the earlier items referred to by a given work, but also the later items that cite that given work in turn. Some technical notes on retrieval are included here. Counts of citations received over time, and measures derived from them, reveal the varying impacts of works, authors, journals, organizations, and countries. This has obvious implications for the evaluation of, e.g., library collections, academics, research teams, and science policies. When treated as linkages between pairs of publications, references and citations reveal intellectual ties. Several kinds of links have been defined, such as cocitation, bibliographic coupling, and intercitation. In the aggregate, these links form networks that compactly suggest the intellectual histories of research specialties and disciplines, especially when the networks are visualized through mapping software. Citation analysis is of course not without critics, who have long pointed out imperfections in the data or in analytical techniques. However, the criticisms have generally been met by strong counterarguments from proponents.
  10. Wouters, P.: ¬The signs of science (1998) 0.01
    0.010846846 = product of:
      0.032540537 = sum of:
        0.032540537 = product of:
          0.065081075 = sum of:
            0.065081075 = weight(_text_:conference in 1023) [ClassicSimilarity], result of:
              0.065081075 = score(doc=1023,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3351522 = fieldWeight in 1023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1023)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Paper presented at the 6th conference of the International Society for Scientometrics and Informetrics, Jerusalem, 16-19 June 1997
  11. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.01
    0.010354449 = product of:
      0.031063346 = sum of:
        0.031063346 = weight(_text_:retrieval in 1080) [ClassicSimilarity], result of:
          0.031063346 = score(doc=1080,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.20052543 = fieldWeight in 1080, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1080)
      0.33333334 = coord(1/3)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
  12. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.01
    0.00981241 = product of:
      0.029437229 = sum of:
        0.029437229 = product of:
          0.058874458 = sum of:
            0.058874458 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.058874458 = score(doc=2763,freq=4.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 19:22:35
  13. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.01
    0.008628707 = product of:
      0.025886122 = sum of:
        0.025886122 = weight(_text_:retrieval in 5767) [ClassicSimilarity], result of:
          0.025886122 = score(doc=5767,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.16710453 = fieldWeight in 5767, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5767)
      0.33333334 = coord(1/3)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
  14. Sidiropoulos, A.; Manolopoulos, Y.: ¬A new perspective to automatically rank scientific conferences using digital libraries (2005) 0.01
    0.008135135 = product of:
      0.024405405 = sum of:
        0.024405405 = product of:
          0.04881081 = sum of:
            0.04881081 = weight(_text_:conference in 1011) [ClassicSimilarity], result of:
              0.04881081 = score(doc=1011,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.25136417 = fieldWeight in 1011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1011)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Citation analysis is performed in order to evaluate authors and scientific collections, such as journals and conference proceedings. Currently, two major systems exist that perform citation analysis: Science Citation Index (SCI) by the Institute for Scientific Information (ISI) and CiteSeer by the NEC Research Institute. The SCI, mostly a manual system up until recently, is based on the notion of the ISI Impact Factor, which has been used extensively for citation analysis purposes. On the other hand the CiteSeer system is an automatically built digital library using agents technology, also based on the notion of ISI Impact Factor. In this paper, we investigate new alternative notions besides the ISI impact factor, in order to provide a novel approach aiming at ranking scientific collections. Furthermore, we present a web-based system that has been built by extracting data from the Databases and Logic Programming (DBLP) website of the University of Trier. Our system, by using the new citation metrics, emerges as a useful tool for ranking scientific collections. In this respect, some first remarks are presented, e.g. on ranking conferences related to databases.
  15. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.01
    0.006938421 = product of:
      0.020815263 = sum of:
        0.020815263 = product of:
          0.041630525 = sum of:
            0.041630525 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.041630525 = score(doc=994,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.23214069 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.12.2007 19:22:05
  16. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.01
    0.006902966 = product of:
      0.020708898 = sum of:
        0.020708898 = weight(_text_:retrieval in 2213) [ClassicSimilarity], result of:
          0.020708898 = score(doc=2213,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.13368362 = fieldWeight in 2213, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2213)
      0.33333334 = coord(1/3)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
  17. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.01
    0.006779279 = product of:
      0.020337837 = sum of:
        0.020337837 = product of:
          0.040675674 = sum of:
            0.040675674 = weight(_text_:conference in 337) [ClassicSimilarity], result of:
              0.040675674 = score(doc=337,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.20947012 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  18. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.01
    0.006779279 = product of:
      0.020337837 = sum of:
        0.020337837 = product of:
          0.040675674 = sum of:
            0.040675674 = weight(_text_:conference in 2946) [ClassicSimilarity], result of:
              0.040675674 = score(doc=2946,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.20947012 = fieldWeight in 2946, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2946)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.