Search (359 results, page 1 of 18)

  • × language_ss:"e"
  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.12
    0.11885393 = product of:
      0.35656178 = sum of:
        0.034793857 = product of:
          0.10438157 = sum of:
            0.10438157 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.10438157 = score(doc=562,freq=2.0), product of:
                0.18572637 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.021906832 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.10438157 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.10438157 = score(doc=562,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.10438157 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.10438157 = score(doc=562,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.10438157 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.10438157 = score(doc=562,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.0026870528 = weight(_text_:in in 562) [ClassicSimilarity], result of:
          0.0026870528 = score(doc=562,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.09017298 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.0059361467 = product of:
          0.01780844 = sum of:
            0.01780844 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.01780844 = score(doc=562,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
      0.33333334 = coord(6/18)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.10
    0.09794241 = product of:
      0.35259268 = sum of:
        0.034793857 = product of:
          0.10438157 = sum of:
            0.10438157 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.10438157 = score(doc=862,freq=2.0), product of:
                0.18572637 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.021906832 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.10438157 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.10438157 = score(doc=862,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.10438157 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.10438157 = score(doc=862,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.10438157 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.10438157 = score(doc=862,freq=2.0), product of:
            0.18572637 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.021906832 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.0046541123 = weight(_text_:in in 862) [ClassicSimilarity], result of:
          0.0046541123 = score(doc=862,freq=6.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.1561842 = fieldWeight in 862, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.2777778 = coord(5/18)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  3. Babik, W.: Keywords as linguistic tools in information and knowledge organization (2017) 0.01
    0.0071755773 = product of:
      0.043053463 = sum of:
        0.004433411 = weight(_text_:in in 3510) [ClassicSimilarity], result of:
          0.004433411 = score(doc=3510,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.14877784 = fieldWeight in 3510, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3510)
        0.031631682 = weight(_text_:der in 3510) [ClassicSimilarity], result of:
          0.031631682 = score(doc=3510,freq=28.0), product of:
            0.048934754 = queryWeight, product of:
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.021906832 = queryNorm
            0.6464053 = fieldWeight in 3510, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3510)
        0.006988369 = product of:
          0.020965107 = sum of:
            0.020965107 = weight(_text_:29 in 3510) [ClassicSimilarity], result of:
              0.020965107 = score(doc=3510,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.27205724 = fieldWeight in 3510, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3510)
          0.33333334 = coord(1/3)
      0.16666667 = coord(3/18)
    
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  4. Melby, A.: Some notes on 'The proper place of men and machines in language translation' (1997) 0.00
    0.0036952826 = product of:
      0.033257544 = sum of:
        0.005429798 = weight(_text_:in in 330) [ClassicSimilarity], result of:
          0.005429798 = score(doc=330,freq=6.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.1822149 = fieldWeight in 330, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=330)
        0.027827747 = product of:
          0.04174162 = sum of:
            0.020965107 = weight(_text_:29 in 330) [ClassicSimilarity], result of:
              0.020965107 = score(doc=330,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.27205724 = fieldWeight in 330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=330)
            0.020776514 = weight(_text_:22 in 330) [ClassicSimilarity], result of:
              0.020776514 = score(doc=330,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.2708308 = fieldWeight in 330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=330)
          0.6666667 = coord(2/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Responds to Kay, M.: The proper place of men and machines in language translation. Examines the appropriateness of machine translation (MT) under the following special circumstances: controlled domain-specific text and high-quality output; controlled domain-specific text and indicative output; dynamic general text and indicative output and dynamic general text and high-quality output. MT is appropriate in the 1st 3 cases but the 4th case requires human translation. Examines how MT research could be more useful for aiding human translation
    Date
    31. 7.1996 9:22:19
    Source
    Machine translation. 12(1997) nos.1/2, S.29-34
  5. Hammwöhner, R.: TransRouter revisited : Decision support in the routing of translation projects (2000) 0.00
    0.003608203 = product of:
      0.021649217 = sum of:
        0.0062697898 = weight(_text_:in in 5483) [ClassicSimilarity], result of:
          0.0062697898 = score(doc=5483,freq=8.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.21040362 = fieldWeight in 5483, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5483)
        0.008453923 = weight(_text_:der in 5483) [ClassicSimilarity], result of:
          0.008453923 = score(doc=5483,freq=2.0), product of:
            0.048934754 = queryWeight, product of:
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.021906832 = queryNorm
            0.17275909 = fieldWeight in 5483, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5483)
        0.0069255047 = product of:
          0.020776514 = sum of:
            0.020776514 = weight(_text_:22 in 5483) [ClassicSimilarity], result of:
              0.020776514 = score(doc=5483,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.2708308 = fieldWeight in 5483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5483)
          0.33333334 = coord(1/3)
      0.16666667 = coord(3/18)
    
    Abstract
    This paper gives an outline of the final results of the TransRouter project. In the scope of this project a decision support system for translation managers has been developed, which will support the selection of appropriate routes for translation projects. In this paper emphasis is put on the decision model, which is based on a stepwise refined assessment of translation routes. The workflow of using this system is considered as well
    Date
    10.12.2000 18:22:35
    Source
    Informationskompetenz - Basiskompetenz in der Informationsgesellschaft: Proceedings des 7. Internationalen Symposiums für Informationswissenschaft (ISI 2000), Hrsg.: G. Knorz u. R. Kuhlen
  6. Doszkocs, T.E.; Zamora, A.: Dictionary services and spelling aids for Web searching (2004) 0.00
    0.003273327 = product of:
      0.029459942 = sum of:
        0.0054849237 = weight(_text_:in in 2541) [ClassicSimilarity], result of:
          0.0054849237 = score(doc=2541,freq=12.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.18406484 = fieldWeight in 2541, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2541)
        0.023975018 = product of:
          0.035962526 = sum of:
            0.0149750775 = weight(_text_:29 in 2541) [ClassicSimilarity], result of:
              0.0149750775 = score(doc=2541,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.19432661 = fieldWeight in 2541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2541)
            0.020987447 = weight(_text_:22 in 2541) [ClassicSimilarity], result of:
              0.020987447 = score(doc=2541,freq=4.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.27358043 = fieldWeight in 2541, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2541)
          0.6666667 = coord(2/3)
      0.11111111 = coord(2/18)
    
    Abstract
    The Specialized Information Services Division (SIS) of the National Library of Medicine (NLM) provides Web access to more than a dozen scientific databases on toxicology and the environment on TOXNET . Search queries on TOXNET often include misspelled or variant English words, medical and scientific jargon and chemical names. Following the example of search engines like Google and ClinicalTrials.gov, we set out to develop a spelling "suggestion" system for increased recall and precision in TOXNET searching. This paper describes development of dictionary technology that can be used in a variety of applications such as orthographic verification, writing aid, natural language processing, and information storage and retrieval. The design of the technology allows building complex applications using the components developed in the earlier phases of the work in a modular fashion without extensive rewriting of computer code. Since many of the potential applications envisioned for this work have on-line or web-based interfaces, the dictionaries and other computer components must have fast response, and must be adaptable to open-ended database vocabularies, including chemical nomenclature. The dictionary vocabulary for this work was derived from SIS and other databases and specialized resources, such as NLM's Unified Medical Language Systems (UMLS) . The resulting technology, A-Z Dictionary (AZdict), has three major constituents: 1) the vocabulary list, 2) the word attributes that define part of speech and morphological relationships between words in the list, and 3) a set of programs that implements the retrieval of words and their attributes, and determines similarity between words (ChemSpell). These three components can be used in various applications such as spelling verification, spelling aid, part-of-speech tagging, paraphrasing, and many other natural language processing functions.
    Date
    14. 8.2004 17:22:56
    Source
    Online. 28(2004) no.3, S.22-29
  7. Proszeky, G.: Language technology tools in the translator's practice (1999) 0.00
    0.0022496143 = product of:
      0.020246528 = sum of:
        0.0062697898 = weight(_text_:in in 6873) [ClassicSimilarity], result of:
          0.0062697898 = score(doc=6873,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.21040362 = fieldWeight in 6873, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.109375 = fieldNorm(doc=6873)
        0.013976738 = product of:
          0.041930214 = sum of:
            0.041930214 = weight(_text_:29 in 6873) [ClassicSimilarity], result of:
              0.041930214 = score(doc=6873,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.5441145 = fieldWeight in 6873, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6873)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Date
    30. 3.2002 18:29:40
  8. Jaaranen, K.; Lehtola, A.; Tenni, J.; Bounsaythip, C.: Webtran tools for in-company language support (2000) 0.00
    0.001928553 = product of:
      0.017356977 = sum of:
        0.007109274 = weight(_text_:in in 5553) [ClassicSimilarity], result of:
          0.007109274 = score(doc=5553,freq=14.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.23857531 = fieldWeight in 5553, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5553)
        0.010247703 = weight(_text_:der in 5553) [ClassicSimilarity], result of:
          0.010247703 = score(doc=5553,freq=4.0), product of:
            0.048934754 = queryWeight, product of:
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.021906832 = queryNorm
            0.20941564 = fieldWeight in 5553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.046875 = fieldNorm(doc=5553)
      0.11111111 = coord(2/18)
    
    Abstract
    Webtran tools for authoring and translating domain specific texts can make the multilingual text production in a company more efficient and less expensive. Tile tools have been in production use since spring 2000 for checking and translating product article texts of a specific domain, namely an in-company language in sales catalogues of a mail-order company. Webtran tools have been developed by VTT Information Technology. Use experiences have shown that an automatic translation process is faster than phrase-lexicon assisted manual translation, if an in-company language model is created to control and support the language used within the company
    Source
    Sprachtechnologie für eine dynamische Wirtschaft im Medienzeitalter - Language technologies for dynamic business in the age of the media - L'ingénierie linguistique au service de la dynamisation économique à l'ère du multimédia: Tagungsakten der XXVI. Jahrestagung der Internationalen Vereinigung Sprache und Wirtschaft e.V., 23.-25.11.2000, Fachhochschule Köln. Hrsg.: K.-D. Schmitz
  9. Rau, L.F.: Conceptual information extraction and retrieval from natural language input (198) 0.00
    0.0018129811 = product of:
      0.01631683 = sum of:
        0.0063334443 = weight(_text_:in in 1955) [ClassicSimilarity], result of:
          0.0063334443 = score(doc=1955,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.21253976 = fieldWeight in 1955, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=1955)
        0.009983385 = product of:
          0.029950155 = sum of:
            0.029950155 = weight(_text_:29 in 1955) [ClassicSimilarity], result of:
              0.029950155 = score(doc=1955,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.38865322 = fieldWeight in 1955, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1955)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Date
    16. 8.1998 13:29:20
    Footnote
    Wiederabgedruckt in: Readings in information retrieval. Ed.: K. Sparck Jones u. P. Willett. San Francisco: Morgan Kaufmann 1997. S.527-533
  10. Hutchins, J.: From first conception to first demonstration : the nascent years of machine translation, 1947-1954. A chronology (1997) 0.00
    0.0018030024 = product of:
      0.016227022 = sum of:
        0.0063334443 = weight(_text_:in in 1463) [ClassicSimilarity], result of:
          0.0063334443 = score(doc=1463,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.21253976 = fieldWeight in 1463, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=1463)
        0.0098935785 = product of:
          0.029680735 = sum of:
            0.029680735 = weight(_text_:22 in 1463) [ClassicSimilarity], result of:
              0.029680735 = score(doc=1463,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.38690117 = fieldWeight in 1463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1463)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Chronicles the early history of applying electronic computers to the task of translating natural languages, from the 1st suggestions by Warren Weaver in Mar 1947 to the 1st demonstration of a working, if limited, program in Jan 1954
    Date
    31. 7.1996 9:22:19
  11. Wanner, L.: Lexical choice in text generation and machine translation (1996) 0.00
    0.0017695675 = product of:
      0.015926108 = sum of:
        0.008011244 = weight(_text_:in in 8521) [ClassicSimilarity], result of:
          0.008011244 = score(doc=8521,freq=10.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.26884392 = fieldWeight in 8521, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=8521)
        0.007914863 = product of:
          0.023744587 = sum of:
            0.023744587 = weight(_text_:22 in 8521) [ClassicSimilarity], result of:
              0.023744587 = score(doc=8521,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.30952093 = fieldWeight in 8521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8521)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Presents the state of the art in lexical choice research in text generation and machine translation. Discusses the existing implementations with respect to: the place of lexical choice in the overall generation rates; the information flow within the generation process and the consequences thereof for lexical choice; the internal organization of the lexical choice process; and the phenomena covered by lexical choice. Identifies possible future directions in lexical choice research
    Date
    31. 7.1996 9:22:19
  12. Wright, S.E.: Leveraging terminology resources across application boundaries : accessing resources in future integrated environments (2000) 0.00
    0.0017356399 = product of:
      0.015620759 = sum of:
        0.0070810067 = weight(_text_:in in 5528) [ClassicSimilarity], result of:
          0.0070810067 = score(doc=5528,freq=20.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.2376267 = fieldWeight in 5528, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5528)
        0.008539752 = weight(_text_:der in 5528) [ClassicSimilarity], result of:
          0.008539752 = score(doc=5528,freq=4.0), product of:
            0.048934754 = queryWeight, product of:
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.021906832 = queryNorm
            0.17451303 = fieldWeight in 5528, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5528)
      0.11111111 = coord(2/18)
    
    Abstract
    The title for this conference, stated in English, is Language Technology for a Dynamic Economy - y in the Media Age - The question arises as to what the media are we are dealing with and to what extent we are moving away from tile reality of different media to a world in which all sub-categories flow together into a unified stream of information that is constantly resealed to appear in different hardware configurations. A few years ago, people who were interested in sharing data or getting different electronic "boxes" to talk to each other were focused on two major aspects: I ) developing data conversion technology, and 2) convincing potential users that sharing information was an even remotely interesting option. Although some content "owners" are still reticent about releasing their data, it has become dramatically apparent in the Web environment that a broad range of users does indeed want this technology. Even as researchers struggle with the remaining technical, legal, and ethical impediments that stand in the way of unlimited information access to existing multi-platform resources, the future view of the world will no longer be as obsessed with conversion capability as it will be with creating content, with ,in eye to morphing technologies that will enable the delivery of that content from ail open-standards-based format such as XML (eXtensibic Markup Language), MPEG (Moving Picture Experts Group), or WAP (Wireless Application Protocol) to a rich variety of display Options
    Source
    Sprachtechnologie für eine dynamische Wirtschaft im Medienzeitalter - Language technologies for dynamic business in the age of the media - L'ingénierie linguistique au service de la dynamisation économique à l'ère du multimédia: Tagungsakten der XXVI. Jahrestagung der Internationalen Vereinigung Sprache und Wirtschaft e.V., 23.-25.11.2000, Fachhochschule Köln. Hrsg.: K.-D. Schmitz
  13. Schwarz, C.: THESYS: Thesaurus Syntax System : a fully automatic thesaurus building aid (1988) 0.00
    0.0017088254 = product of:
      0.015379428 = sum of:
        0.008453923 = weight(_text_:der in 1361) [ClassicSimilarity], result of:
          0.008453923 = score(doc=1361,freq=2.0), product of:
            0.048934754 = queryWeight, product of:
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.021906832 = queryNorm
            0.17275909 = fieldWeight in 1361, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.2337668 = idf(docFreq=12875, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1361)
        0.0069255047 = product of:
          0.020776514 = sum of:
            0.020776514 = weight(_text_:22 in 1361) [ClassicSimilarity], result of:
              0.020776514 = score(doc=1361,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.2708308 = fieldWeight in 1361, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1361)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Date
    6. 1.1999 10:22:07
    Source
    Wissensorganisation im Wandel: Dezimalklassifikation - Thesaurusfragen - Warenklassifikation. Proc. 11. Jahrestagung der Gesellschaft für Klassifikation, Aachen, 29.6.-1.7.1987. Hrsg.: H.-J. Hermes u. J. Hölzl
  14. Czejdo. B.D.; Tucci, R.P.: ¬A dataflow graphical language for database applications (1994) 0.00
    0.0016068673 = product of:
      0.014461806 = sum of:
        0.0044784215 = weight(_text_:in in 559) [ClassicSimilarity], result of:
          0.0044784215 = score(doc=559,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.15028831 = fieldWeight in 559, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=559)
        0.009983385 = product of:
          0.029950155 = sum of:
            0.029950155 = weight(_text_:29 in 559) [ClassicSimilarity], result of:
              0.029950155 = score(doc=559,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.38865322 = fieldWeight in 559, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=559)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Discusses a graphical language for information retrieval and processing. A lot of recent activity has occured in the area of improving access to database systems. However, current results are restricted to simple interfacing of database systems. Proposes a graphical language for specifying complex applications
    Date
    20.10.2000 13:29:46
  15. Liu, S.; Liu, F.; Yu, C.; Meng, W.: ¬An effective approach to document retrieval via utilizing WordNet and recognizing phrases (2004) 0.00
    0.0016068673 = product of:
      0.014461806 = sum of:
        0.0044784215 = weight(_text_:in in 4078) [ClassicSimilarity], result of:
          0.0044784215 = score(doc=4078,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.15028831 = fieldWeight in 4078, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=4078)
        0.009983385 = product of:
          0.029950155 = sum of:
            0.029950155 = weight(_text_:29 in 4078) [ClassicSimilarity], result of:
              0.029950155 = score(doc=4078,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.38865322 = fieldWeight in 4078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4078)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Date
    10.10.2005 10:29:08
    Source
    SIGIR'04: Proceedings of the 27th Annual International ACM-SIGIR Conference an Research and Development in Information Retrieval. Ed.: K. Järvelin, u.a
  16. Basili, R.; Pazienza, M.T.; Velardi, P.: ¬An empirical symbolic approach to natural language processing (1996) 0.00
    0.0015689273 = product of:
      0.014120346 = sum of:
        0.0062054833 = weight(_text_:in in 6753) [ClassicSimilarity], result of:
          0.0062054833 = score(doc=6753,freq=6.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.2082456 = fieldWeight in 6753, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=6753)
        0.007914863 = product of:
          0.023744587 = sum of:
            0.023744587 = weight(_text_:22 in 6753) [ClassicSimilarity], result of:
              0.023744587 = score(doc=6753,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.30952093 = fieldWeight in 6753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6753)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Describes and evaluates the results of a large scale lexical learning system, ARISTO-LEX, that uses a combination of probabilisitc and knowledge based methods for the acquisition of selectional restrictions of words in sublanguages. Presents experimental data obtained from different corpora in different doamins and languages, and shows that the acquired lexical data not only have practical applications in natural language processing, but they are useful for a comparative analysis of sublanguages
    Date
    6. 3.1997 16:22:15
  17. Morris, V.: Automated language identification of bibliographic resources (2020) 0.00
    0.0015689273 = product of:
      0.014120346 = sum of:
        0.0062054833 = weight(_text_:in in 5749) [ClassicSimilarity], result of:
          0.0062054833 = score(doc=5749,freq=6.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.2082456 = fieldWeight in 5749, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=5749)
        0.007914863 = product of:
          0.023744587 = sum of:
            0.023744587 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.023744587 = score(doc=5749,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
    Date
    2. 3.2020 19:04:22
  18. Bowker, L.: Information retrieval in translation memory systems : assessment of current limitations and possibilities for future development (2002) 0.00
    0.0015553564 = product of:
      0.013998208 = sum of:
        0.0070098387 = weight(_text_:in in 1854) [ClassicSimilarity], result of:
          0.0070098387 = score(doc=1854,freq=10.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.23523843 = fieldWeight in 1854, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1854)
        0.006988369 = product of:
          0.020965107 = sum of:
            0.020965107 = weight(_text_:29 in 1854) [ClassicSimilarity], result of:
              0.020965107 = score(doc=1854,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.27205724 = fieldWeight in 1854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1854)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    A translation memory system is a new type of human language technology (HLT) tool that is gaining popularity among translators. Such tools allow translators to store previously translated texts in a type of aligned bilingual database, and to recycle relevant parts of these texts when producing new translations. Currently, these tools retrieve information from the database using superficial character string matching, which often results in poor precision and recall. This paper explains how translation memory systems work, and it considers some possible ways for introducing more sophisticated information retrieval techniques into such systems by taking syntactic and semantic similarity into account. Some of the suggested techniques are inspired by these used in other areas of HLT, and some by techniques used in information science.
    Source
    Knowledge organization. 29(2002) nos.3/4, S.198-203
  19. Paolillo, J.C.: Linguistics and the information sciences (2009) 0.00
    0.0015483715 = product of:
      0.013935343 = sum of:
        0.0070098387 = weight(_text_:in in 3840) [ClassicSimilarity], result of:
          0.0070098387 = score(doc=3840,freq=10.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.23523843 = fieldWeight in 3840, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3840)
        0.0069255047 = product of:
          0.020776514 = sum of:
            0.020776514 = weight(_text_:22 in 3840) [ClassicSimilarity], result of:
              0.020776514 = score(doc=3840,freq=2.0), product of:
                0.076713994 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021906832 = queryNorm
                0.2708308 = fieldWeight in 3840, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3840)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Linguistics is the scientific study of language which emphasizes language spoken in everyday settings by human beings. It has a long history of interdisciplinarity, both internally and in contribution to other fields, including information science. A linguistic perspective is beneficial in many ways in information science, since it examines the relationship between the forms of meaningful expressions and their social, cognitive, institutional, and communicative context, these being two perspectives on information that are actively studied, to different degrees, in information science. Examples of issues relevant to information science are presented for which the approach taken under a linguistic perspective is illustrated.
    Date
    27. 8.2011 14:22:33
  20. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.00
    0.0014731288 = product of:
      0.013258159 = sum of:
        0.0062697898 = weight(_text_:in in 4121) [ClassicSimilarity], result of:
          0.0062697898 = score(doc=4121,freq=8.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.21040362 = fieldWeight in 4121, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4121)
        0.006988369 = product of:
          0.020965107 = sum of:
            0.020965107 = weight(_text_:29 in 4121) [ClassicSimilarity], result of:
              0.020965107 = score(doc=4121,freq=2.0), product of:
                0.077061385 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.021906832 = queryNorm
                0.27205724 = fieldWeight in 4121, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.33333334 = coord(1/3)
      0.11111111 = coord(2/18)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
    Date
    29. 6.2015 14:51:28

Years

Types

  • el 24
  • p 1
  • More… Less…