Search (83 results, page 5 of 5)

  • × language_ss:"e"
  • × theme_ss:"Computerlinguistik"
  • × year_i:[2010 TO 2020}
  1. Muneer, I.; Sharjeel, M.; Iqbal, M.; Adeel Nawab, R.M.; Rayson, P.: CLEU - A Cross-language english-urdu corpus and benchmark for text reuse experiments (2019) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 5299) [ClassicSimilarity], result of:
          0.008582841 = score(doc=5299,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 5299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5299)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.7, S.729-741
  2. Spitkovsky, V.; Norvig, P.: From words to concepts and back : dictionaries for linking text, entities and ideas (2012) 0.00
    0.0017165683 = product of:
      0.006866273 = sum of:
        0.006866273 = weight(_text_:information in 337) [ClassicSimilarity], result of:
          0.006866273 = score(doc=337,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=337)
      0.25 = coord(1/4)
    
    Abstract
    Human language is both rich and ambiguous. When we hear or read words, we resolve meanings to mental representations, for example recognizing and linking names to the intended persons, locations or organizations. Bridging words and meaning - from turning search queries into relevant results to suggesting targeted keywords for advertisers - is also Google's core competency, and important for many other tasks in information retrieval and natural language processing. We are happy to release a resource, spanning 7,560,141 concepts and 175,100,788 unique text strings, that we hope will help everyone working in these areas. How do we represent concepts? Our approach piggybacks on the unique titles of entries from an encyclopedia, which are mostly proper and common noun phrases. We consider each individual Wikipedia article as representing a concept (an entity or an idea), identified by its URL. Text strings that refer to concepts were collected using the publicly available hypertext of anchors (the text you click on in a web link) that point to each Wikipedia page, thus drawing on the vast link structure of the web. For every English article we harvested the strings associated with its incoming hyperlinks from the rest of Wikipedia, the greater web, and also anchors of parallel, non-English Wikipedia pages. Our dictionaries are cross-lingual, and any concept deemed too fine can be broadened to a desired level of generality using Wikipedia's groupings of articles into hierarchical categories. The data set contains triples, each consisting of (i) text, a short, raw natural language string; (ii) url, a related concept, represented by an English Wikipedia article's canonical location; and (iii) count, an integer indicating the number of times text has been observed connected with the concept's url. Our database thus includes weights that measure degrees of association. For example, the top two entries for football indicate that it is an ambiguous term, which is almost twice as likely to refer to what we in the US call soccer. Vgl. auch: Spitkovsky, V.I., A.X. Chang: A cross-lingual dictionary for english Wikipedia concepts. In: http://nlp.stanford.edu/pubs/crosswikis.pdf.
  3. Nagy T., I.: Detecting multiword expressions and named entities in natural language texts (2014) 0.00
    0.0015019972 = product of:
      0.006007989 = sum of:
        0.006007989 = weight(_text_:information in 1536) [ClassicSimilarity], result of:
          0.006007989 = score(doc=1536,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.06788416 = fieldWeight in 1536, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1536)
      0.25 = coord(1/4)
    
    Abstract
    Multiword expressions (MWEs) are lexical items that can be decomposed into single words and display lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasy (Sag et al., 2002; Kim, 2008; Calzolari et al., 2002). The proper treatment of multiword expressions such as rock 'n' roll and make a decision is essential for many natural language processing (NLP) applications like information extraction and retrieval, terminology extraction and machine translation, and it is important to identify multiword expressions in context. For example, in machine translation we must know that MWEs form one semantic unit, hence their parts should not be translated separately. For this, multiword expressions should be identified first in the text to be translated. The chief aim of this thesis is to develop machine learning-based approaches for the automatic detection of different types of multiword expressions in English and Hungarian natural language texts. In our investigations, we pay attention to the characteristics of different types of multiword expressions such as nominal compounds, multiword named entities and light verb constructions, and we apply novel methods to identify MWEs in raw texts. In the thesis it will be demonstrated that nominal compounds and multiword amed entities may require a similar approach for their automatic detection as they behave in the same way from a linguistic point of view. Furthermore, it will be shown that the automatic detection of light verb constructions can be carried out using two effective machine learning-based approaches.

Types

  • a 73
  • el 7
  • x 4
  • m 2
  • s 1
  • More… Less…