Search (500 results, page 25 of 25)

  • × language_ss:"e"
  • × theme_ss:"Computerlinguistik"
  1. Blair, D.C.: Information retrieval and the philosophy of language (2002) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4283) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4283,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4283, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4283)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information retrieval - the retrieval, primarily, of documents or textual material - is fundamentally a linguistic process. At the very least we must describe what we want and match that description with descriptions of the information that is available to us. Furthermore, when we describe what we want, we must mean something by that description. This is a deceptively simple act, but such linguistic events have been the grist for philosophical analysis since Aristotle. Although there are complexities involved in referring to authors, document types, or other categories of information retrieval context, here I wish to focus an one of the most problematic activities in information retrieval: the description of the intellectual content of information items. And even though I take information retrieval to involve the description and retrieval of written text, what I say here is applicable to any information item whose intellectual content can be described for retrieval-books, documents, images, audio clips, video clips, scientific specimens, engineering schematics, and so forth. For convenience, though, I will refer only to the description and retrieval of documents. The description of intellectual content can go wrong in many obvious ways. We may describe what we want incorrectly; we may describe it correctly but in such general terms that its description is useless for retrieval; or we may describe what we want correctly, but misinterpret the descriptions of available information, and thereby match our description of what we want incorrectly. From a linguistic point of view, we can be misunderstood in the process of retrieval in many ways. Because the philosophy of language deals specifically with how we are understood and mis-understood, it should have some use for understanding the process of description in information retrieval. First, however, let us examine more closely the kinds of misunderstandings that can occur in information retrieval. We use language in searching for information in two principal ways. We use it to describe what we want and to discriminate what we want from other information that is available to us but that we do not want. Description and discrimination together articulate the goals of the information search process; they also delineate the two principal ways in which language can fail us in this process. Van Rijsbergen (1979) was the first to make this distinction, calling them "representation" and "discrimination.""
    Type
    a
  2. Collins, C.: WordNet explorer : applying visualization principles to lexical semantics (2006) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1288) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1288,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1288, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1288)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interface designs for lexical databases in NLP have suffered from not following design principles developed in the information visualization research community. We present a design paradigm and show it can be used to generate visualizations which maximize the usability and utility ofWordNet. The techniques can be generally applied to other lexical databases used in NLP research.
  3. Mauldin, M.L.: Conceptual information retrieval : a case study in adaptive partial parsing (1991) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 121) [ClassicSimilarity], result of:
              0.0054123 = score(doc=121,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 121, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=121)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Sprachtechnologie, mobile Kommunikation und linguistische Ressourcen : Beiträge zur GLDV Tagung 2005 in Bonn (2005) 0.00
    0.0012428787 = product of:
      0.0024857575 = sum of:
        0.0024857575 = product of:
          0.004971515 = sum of:
            0.004971515 = weight(_text_:a in 3578) [ClassicSimilarity], result of:
              0.004971515 = score(doc=3578,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.09361574 = fieldWeight in 3578, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3578)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    INHALT: Chris Biemann/Rainer Osswald: Automatische Erweiterung eines semantikbasierten Lexikons durch Bootstrapping auf großen Korpora - Ernesto William De Luca/Andreas Nürnberger: Supporting Mobile Web Search by Ontology-based Categorization - Rüdiger Gleim: HyGraph - Ein Framework zur Extraktion, Repräsentation und Analyse webbasierter Hypertextstrukturen - Felicitas Haas/Bernhard Schröder: Freges Grundgesetze der Arithmetik: Dokumentbaum und Formelwald - Ulrich Held/ Andre Blessing/Bettina Säuberlich/Jürgen Sienel/Horst Rößler/Dieter Kopp: A personalized multimodal news service -Jürgen Hermes/Christoph Benden: Fusion von Annotation und Präprozessierung als Vorschlag zur Behebung des Rohtextproblems - Sonja Hüwel/Britta Wrede/Gerhard Sagerer: Semantisches Parsing mit Frames für robuste multimodale Mensch-Maschine-Kommunikation - Brigitte Krenn/Stefan Evert: Separating the wheat from the chaff- Corpus-driven evaluation of statistical association measures for collocation extraction - Jörn Kreutel: An application-centered Perspective an Multimodal Dialogue Systems - Jonas Kuhn: An Architecture for Prallel Corpusbased Grammar Learning - Thomas Mandl/Rene Schneider/Pia Schnetzler/Christa Womser-Hacker: Evaluierung von Systemen für die Eigennamenerkennung im crosslingualen Information Retrieval - Alexander Mehler/Matthias Dehmer/Rüdiger Gleim: Zur Automatischen Klassifikation von Webgenres - Charlotte Merz/Martin Volk: Requirements for a Parallel Treebank Search Tool - Sally YK. Mok: Multilingual Text Retrieval an the Web: The Case of a Cantonese-Dagaare-English Trilingual e-Lexicon -
    Karel Pala: The Balkanet Experience - Peter M. Kruse/Andre Nauloks/Dietmar Rösner/Manuela Kunze: Clever Search: A WordNet Based Wrapper for Internet Search Engines - Rosmary Stegmann/Wolfgang Woerndl: Using GermaNet to Generate Individual Customer Profiles - Ingo Glöckner/Sven Hartrumpf/Rainer Osswald: From GermaNet Glosses to Formal Meaning Postulates -Aljoscha Burchardt/ Katrin Erk/Anette Frank: A WordNet Detour to FrameNet - Daniel Naber: OpenThesaurus: ein offenes deutsches Wortnetz - Anke Holler/Wolfgang Grund/Heinrich Petith: Maschinelle Generierung assoziativer Termnetze für die Dokumentensuche - Stefan Bordag/Hans Friedrich Witschel/Thomas Wittig: Evaluation of Lexical Acquisition Algorithms - Iryna Gurevych/Hendrik Niederlich: Computing Semantic Relatedness of GermaNet Concepts - Roland Hausser: Turn-taking als kognitive Grundmechanik der Datenbanksemantik - Rodolfo Delmonte: Parsing Overlaps - Melanie Twiggs: Behandlung des Passivs im Rahmen der Datenbanksemantik- Sandra Hohmann: Intention und Interaktion - Anmerkungen zur Relevanz der Benutzerabsicht - Doris Helfenbein: Verwendung von Pronomina im Sprecher- und Hörmodus - Bayan Abu Shawar/Eric Atwell: Modelling turn-taking in a corpus-trained chatbot - Barbara März: Die Koordination in der Datenbanksemantik - Jens Edlund/Mattias Heldner/Joakim Gustafsson: Utterance segmentation and turn-taking in spoken dialogue systems - Ekaterina Buyko: Numerische Repräsentation von Textkorpora für Wissensextraktion - Bernhard Fisseni: ProofML - eine Annotationssprache für natürlichsprachliche mathematische Beweise - Iryna Schenk: Auflösung der Pronomen mit Nicht-NP-Antezedenten in spontansprachlichen Dialogen - Stephan Schwiebert: Entwurf eines agentengestützten Systems zur Paradigmenbildung - Ingmar Steiner: On the analysis of speech rhythm through acoustic parameters - Hans Friedrich Witschel: Text, Wörter, Morpheme - Möglichkeiten einer automatischen Terminologie-Extraktion.
  5. Arsenault, C.: Aggregation consistency and frequency of Chinese words and characters (2006) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 609) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=609,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 609, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=609)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Aims to measure syllable aggregation consistency of Romanized Chinese data in the title fields of bibliographic records. Also aims to verify if the term frequency distributions satisfy conventional bibliometric laws. Design/methodology/approach - Uses Cooper's interindexer formula to evaluate aggregation consistency within and between two sets of Chinese bibliographic data. Compares the term frequency distributions of polysyllabic words and monosyllabic characters (for vernacular and Romanized data) with the Lotka and the generalised Zipf theoretical distributions. The fits are tested with the Kolmogorov-Smirnov test. Findings - Finds high internal aggregation consistency within each data set but some aggregation discrepancy between sets. Shows that word (polysyllabic) distributions satisfy Lotka's law but that character (monosyllabic) distributions do not abide by the law. Research limitations/implications - The findings are limited to only two sets of bibliographic data (for aggregation consistency analysis) and to one set of data for the frequency distribution analysis. Only two bibliometric distributions are tested. Internal consistency within each database remains fairly high. Therefore the main argument against syllable aggregation does not appear to hold true. The analysis revealed that Chinese words and characters behave differently in terms of frequency distribution but that there is no noticeable difference between vernacular and Romanized data. The distribution of Romanized characters exhibits the worst case in terms of fit to either Lotka's or Zipf's laws, which indicates that Romanized data in aggregated form appear to be a preferable option. Originality/value - Provides empirical data on consistency and distribution of Romanized Chinese titles in bibliographic records.
    Type
    a
  6. Jurafsky, D.; Martin, J.H.: Speech and language processing : ani ntroduction to natural language processing, computational linguistics and speech recognition (2009) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1081) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1081,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1081, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1081)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology at all levels and with all modern technologies this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material.
  7. Lian, T.; Yu, C.; Wang, W.; Yuan, Q.; Hou, Z.: Doctoral dissertations on tourism in China : a co-word analysis (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3178) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3178,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3178, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3178)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Xiang, R.; Chersoni, E.; Lu, Q.; Huang, C.-R.; Li, W.; Long, Y.: Lexical data augmentation for sentiment analysis (2021) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 392) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=392,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 392, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=392)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Machine learning methods, especially deep learning models, have achieved impressive performance in various natural language processing tasks including sentiment analysis. However, deep learning models are more demanding for training data. Data augmentation techniques are widely used to generate new instances based on modifications to existing data or relying on external knowledge bases to address annotated data scarcity, which hinders the full potential of machine learning techniques. This paper presents our work using part-of-speech (POS) focused lexical substitution for data augmentation (PLSDA) to enhance the performance of machine learning algorithms in sentiment analysis. We exploit POS information to identify words to be replaced and investigate different augmentation strategies to find semantically related substitutions when generating new instances. The choice of POS tags as well as a variety of strategies such as semantic-based substitution methods and sampling methods are discussed in detail. Performance evaluation focuses on the comparison between PLSDA and two previous lexical substitution-based data augmentation methods, one of which is thesaurus-based, and the other is lexicon manipulation based. Our approach is tested on five English sentiment analysis benchmarks: SST-2, MR, IMDB, Twitter, and AirRecord. Hyperparameters such as the candidate similarity threshold and number of newly generated instances are optimized. Results show that six classifiers (SVM, LSTM, BiLSTM-AT, bidirectional encoder representations from transformers [BERT], XLNet, and RoBERTa) trained with PLSDA achieve accuracy improvement of more than 0.6% comparing to two previous lexical substitution methods averaged on five benchmarks. Introducing POS constraint and well-designed augmentation strategies can improve the reliability of lexical data augmentation methods. Consequently, PLSDA significantly improves the performance of sentiment analysis algorithms.
    Type
    a
  9. WordNet : an electronic lexical database (language, speech and communication) (1998) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2434) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2434,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2434)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    WordNet, an electronic lexical database, is considerd to be the most important resource available to researchers in computational linguistics, text analysis, and many related areas. English nouns, verbs, adjectives, and adverbs are organized into synonym sets, each representing one underlying lexicalized concept. Different relations link the synonym sets. The purpose of this volume is twofold. First, it discusses the design of WordNet and the theoretical motivation behind it. Second, it provides a survey of representative applications, including word sense identification, information retrieval, selectional preferences of verbs, and lexical chains
  10. Brenner, E.H.: Beyond Boolean : new approaches in information retrieval; the quest for intuitive online search systems past, present & future (1995) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2547) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2547,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2547)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Issue
    A collection of writings.
  11. Grigonyte, G.: Building and evaluating domain ontologies : NLP contributions (2010) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 481) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=481,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 481, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=481)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An ontology is a knowledge representation structure made up of concepts and their interrelations. It represents shared understanding delineated by some domain. The building of an ontology can be addressed from the perspective of natural language processing. This thesis discusses the validity and theoretical background of knowledge acquisition from natural language. It also presents the theoretical and experimental framework for NLP-driven ontology building and evaluation tasks.
  12. Rayson, P.; Piao, S.; Sharoff, S.; Evert, S.; Moiron, B.V.: Multiword expressions : hard going or plain sailing? (2015) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2918) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2918,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2918, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2918)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Babik, W.: Keywords as linguistic tools in information and knowledge organization (2017) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 3510) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=3510,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 3510, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3510)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 1139) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=1139,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 1139, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Wacholder, N.; Byrd, R.J.: Retrieving information from full text using linguistic knowledge (1994) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 8524) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=8524,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 8524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=8524)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Losee, R.M.: Learning syntactic rules and tags with genetic algorithms for information retrieval and filtering : an empirical basis for grammatical rules (1996) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4068) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4068,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4068, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4068)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Mustafa el Hadi, W.: Terminology & information retrieval : new tools for new needs. Integration of knowledge across boundaries (2003) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 2688) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=2688,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 2688, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2688)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Lu, K.; Cai, X.; Ajiferuke, I.; Wolfram, D.: Vocabulary size and its effect on topic representation (2017) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 3414) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=3414,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 3414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3414)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Reyes Ayala, B.; Knudson, R.; Chen, J.; Cao, G.; Wang, X.: Metadata records machine translation combining multi-engine outputs with limited parallel data (2018) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 4010) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=4010,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 4010, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4010)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Zaitseva, E.M.: Developing linguistic tools of thematic search in library information systems (2023) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 1187) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=1187,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 1187, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1187)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

Types

  • a 433
  • el 45
  • m 33
  • s 19
  • p 7
  • x 5
  • pat 1
  • r 1
  • More… Less…

Subjects

Classifications