Search (114 results, page 1 of 6)

  • × language_ss:"e"
  • × theme_ss:"Data Mining"
  • × type_ss:"a"
  1. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.05
    0.04769496 = product of:
      0.09538992 = sum of:
        0.05912982 = weight(_text_:data in 4577) [ClassicSimilarity], result of:
          0.05912982 = score(doc=4577,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.48910472 = fieldWeight in 4577, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.109375 = fieldNorm(doc=4577)
        0.0362601 = product of:
          0.0725202 = sum of:
            0.0725202 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.0725202 = score(doc=4577,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    2. 4.2000 18:01:22
    Theme
    Data Mining
  2. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.04
    0.043052107 = product of:
      0.086104214 = sum of:
        0.07315418 = weight(_text_:data in 1605) [ClassicSimilarity], result of:
          0.07315418 = score(doc=1605,freq=24.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.60511017 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.02590007 = score(doc=1605,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
    Theme
    Data Mining
  3. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.04
    0.043052107 = product of:
      0.086104214 = sum of:
        0.07315418 = weight(_text_:data in 5011) [ClassicSimilarity], result of:
          0.07315418 = score(doc=5011,freq=24.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.60511017 = fieldWeight in 5011, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.02590007 = score(doc=5011,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Theme
    Data Mining
  4. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.04
    0.0396217 = product of:
      0.0792434 = sum of:
        0.058523346 = weight(_text_:data in 1737) [ClassicSimilarity], result of:
          0.058523346 = score(doc=1737,freq=6.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.48408815 = fieldWeight in 1737, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.020720055 = product of:
          0.04144011 = sum of:
            0.04144011 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.04144011 = score(doc=1737,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
    Theme
    Data Mining
  5. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.03
    0.03425208 = product of:
      0.06850416 = sum of:
        0.04778411 = weight(_text_:data in 1270) [ClassicSimilarity], result of:
          0.04778411 = score(doc=1270,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.3952563 = fieldWeight in 1270, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.020720055 = product of:
          0.04144011 = sum of:
            0.04144011 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.04144011 = score(doc=1270,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
    Theme
    Data Mining
  6. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.03
    0.027592812 = product of:
      0.055185623 = sum of:
        0.042235587 = weight(_text_:data in 668) [ClassicSimilarity], result of:
          0.042235587 = score(doc=668,freq=8.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.34936053 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.02590007 = score(doc=668,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Theme
    Data Mining
  7. Fayyad, U.M.: Data mining and knowledge dicovery : making sense out of data (1996) 0.03
    0.025863906 = product of:
      0.103455625 = sum of:
        0.103455625 = weight(_text_:data in 7007) [ClassicSimilarity], result of:
          0.103455625 = score(doc=7007,freq=12.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.855755 = fieldWeight in 7007, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=7007)
      0.25 = coord(1/4)
    
    Abstract
    Defines knowledge discovery and data mining (KDD) as the overall process of extracting high level knowledge from low level data. Outlines the KDD process. Explains how KDD is related to the fields of: statistics, pattern recognition, machine learning, artificial intelligence, databases and data warehouses
    Theme
    Data Mining
  8. Carter, D.; Sholler, D.: Data science on the ground : hype, criticism, and everyday work (2016) 0.03
    0.02534135 = product of:
      0.1013654 = sum of:
        0.1013654 = weight(_text_:data in 3111) [ClassicSimilarity], result of:
          0.1013654 = score(doc=3111,freq=32.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.8384652 = fieldWeight in 3111, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3111)
      0.25 = coord(1/4)
    
    Abstract
    Modern organizations often employ data scientists to improve business processes using diverse sets of data. Researchers and practitioners have both touted the benefits and warned of the drawbacks associated with data science and big data approaches, but few studies investigate how data science is carried out "on the ground." In this paper, we first review the hype and criticisms surrounding data science and big data approaches. We then present the findings of semistructured interviews with 18 data analysts from various industries and organizational roles. Using qualitative coding techniques, we evaluated these interviews in light of the hype and criticisms surrounding data science in the popular discourse. We found that although the data analysts we interviewed were sensitive to both the allure and the potential pitfalls of data science, their motivations and evaluations of their work were more nuanced. We conclude by reflecting on the relationship between data analysts' work and the discourses around data science and big data, suggesting how future research can better account for the everyday practices of this profession.
    Theme
    Data Mining
  9. Tunbridge, N.: Semiology put to data mining (1999) 0.02
    0.023892054 = product of:
      0.09556822 = sum of:
        0.09556822 = weight(_text_:data in 6782) [ClassicSimilarity], result of:
          0.09556822 = score(doc=6782,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.7905126 = fieldWeight in 6782, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.125 = fieldNorm(doc=6782)
      0.25 = coord(1/4)
    
    Theme
    Data Mining
  10. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.02384748 = product of:
      0.04769496 = sum of:
        0.02956491 = weight(_text_:data in 2908) [ClassicSimilarity], result of:
          0.02956491 = score(doc=2908,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24455236 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.01813005 = product of:
          0.0362601 = sum of:
            0.0362601 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.0362601 = score(doc=2908,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
    Theme
    Data Mining
  11. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.02
    0.02301258 = product of:
      0.09205032 = sum of:
        0.09205032 = weight(_text_:data in 5053) [ClassicSimilarity], result of:
          0.09205032 = score(doc=5053,freq=38.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.7614136 = fieldWeight in 5053, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5053)
      0.25 = coord(1/4)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
    Footnote
    Beitrag in einem Themenheft: 'In (Big) Data we trust: Value creation in knowledge organizations'.
    Theme
    Data Mining
  12. Kulathuramaiyer, N.; Maurer, H.: Implications of emerging data mining (2009) 0.02
    0.021946255 = product of:
      0.08778502 = sum of:
        0.08778502 = weight(_text_:data in 3144) [ClassicSimilarity], result of:
          0.08778502 = score(doc=3144,freq=24.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.7261322 = fieldWeight in 3144, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3144)
      0.25 = coord(1/4)
    
    Abstract
    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the 'master miners' allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
    Theme
    Data Mining
  13. Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.: From data mining to knowledge discovery in databases (1996) 0.02
    0.021117793 = product of:
      0.08447117 = sum of:
        0.08447117 = weight(_text_:data in 7458) [ClassicSimilarity], result of:
          0.08447117 = score(doc=7458,freq=8.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.69872105 = fieldWeight in 7458, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=7458)
      0.25 = coord(1/4)
    
    Abstract
    Gives an overview of data mining and knowledge discovery in databases. Clarifies how they are related both to each other and to related fields. Mentions real world applications data mining techniques, challenges involved in real world applications of knowledge discovery, and current and future research directions
    Theme
    Data Mining
  14. Trybula, W.J.: Data mining and knowledge discovery (1997) 0.02
    0.020905549 = product of:
      0.083622195 = sum of:
        0.083622195 = weight(_text_:data in 2300) [ClassicSimilarity], result of:
          0.083622195 = score(doc=2300,freq=16.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.69169855 = fieldWeight in 2300, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2300)
      0.25 = coord(1/4)
    
    Abstract
    State of the art review of the recently developed concepts of data mining (defined as the automated process of evaluating data and finding relationships) and knowledge discovery (defined as the automated process of extracting information, especially unpredicted relationships or previously unknown patterns among the data) with particular reference to numerical data. Includes: the knowledge acquisition process; data mining; evaluation methods; and knowledge discovery. Concludes that existing work in the field are confusing because the terminology is inconsistent and poorly defined. Although methods are available for analyzing and cleaning databases, better coordinated efforts should be directed toward providing users with improved means of structuring search mechanisms to explore the data for relationships
    Theme
    Data Mining
  15. Huvila, I.: Mining qualitative data on human information behaviour from the Web (2010) 0.02
    0.020905549 = product of:
      0.083622195 = sum of:
        0.083622195 = weight(_text_:data in 4676) [ClassicSimilarity], result of:
          0.083622195 = score(doc=4676,freq=16.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.69169855 = fieldWeight in 4676, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4676)
      0.25 = coord(1/4)
    
    Abstract
    This paper discusses an approach of collecting qualitative data on human information behaviour that is based on mining web data using search engines. The approach is technically the same that has been used for some time in webometric research to make statistical inferences on web data, but the present paper shows how the same tools and data collecting methods can be used to gather data for qualitative data analysis on human information behaviour.
    Theme
    Data Mining
  16. Borgman, C.L.; Wofford, M.F.; Golshan, M.S.; Darch, P.T.: Collaborative qualitative research at scale : reflections on 20 years of acquiring global data and making data global (2021) 0.02
    0.019753886 = product of:
      0.079015546 = sum of:
        0.079015546 = weight(_text_:data in 239) [ClassicSimilarity], result of:
          0.079015546 = score(doc=239,freq=28.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.65359366 = fieldWeight in 239, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=239)
      0.25 = coord(1/4)
    
    Abstract
    A 5-year project to study scientific data uses in geography, starting in 1999, evolved into 20 years of research on data practices in sensor networks, environmental sciences, biology, seismology, undersea science, biomedicine, astronomy, and other fields. By emulating the "team science" approaches of the scientists studied, the UCLA Center for Knowledge Infrastructures accumulated a comprehensive collection of qualitative data about how scientists generate, manage, use, and reuse data across domains. Building upon Paul N. Edwards's model of "making global data"-collecting signals via consistent methods, technologies, and policies-to "make data global"-comparing and integrating those data, the research team has managed and exploited these data as a collaborative resource. This article reflects on the social, technical, organizational, economic, and policy challenges the team has encountered in creating new knowledge from data old and new. We reflect on continuity over generations of students and staff, transitions between grants, transfer of legacy data between software tools, research methods, and the role of professional data managers in the social sciences.
    Theme
    Data Mining
  17. Raghavan, V.V.; Deogun, J.S.; Sever, H.: Knowledge discovery and data mining : introduction (1998) 0.02
    0.01955535 = product of:
      0.0782214 = sum of:
        0.0782214 = weight(_text_:data in 2899) [ClassicSimilarity], result of:
          0.0782214 = score(doc=2899,freq=14.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.64702475 = fieldWeight in 2899, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2899)
      0.25 = coord(1/4)
    
    Abstract
    Defines knowledge discovery and database mining. The challenge for knowledge discovery in databases (KDD) is to automatically process large quantities of raw data, identifying the most significant and meaningful patterns, and present these as as knowledge appropriate for achieving a user's goals. Data mining is the process of deriving useful knowledge from real world databases through the application of pattern extraction techniques. Explains the goals of, and motivation for, research work on data mining. Discusses the nature of database contents, along with problems within the field of data mining
    Footnote
    Contribution to a special issue devoted to knowledge discovery and data mining
    Theme
    Data Mining
  18. Dang, X.H.; Ong. K.-L.: Knowledge discovery in data streams (2009) 0.02
    0.019006012 = product of:
      0.07602405 = sum of:
        0.07602405 = weight(_text_:data in 3829) [ClassicSimilarity], result of:
          0.07602405 = score(doc=3829,freq=18.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.6288489 = fieldWeight in 3829, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.25 = coord(1/4)
    
    Abstract
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resourcesare abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works.
    Theme
    Data Mining
  19. Frické, M.: Big data and its epistemology (2015) 0.02
    0.019006012 = product of:
      0.07602405 = sum of:
        0.07602405 = weight(_text_:data in 1811) [ClassicSimilarity], result of:
          0.07602405 = score(doc=1811,freq=18.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.6288489 = fieldWeight in 1811, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1811)
      0.25 = coord(1/4)
    
    Abstract
    The article considers whether Big Data, in the form of data-driven science, will enable the discovery, or appraisal, of universal scientific theories, instrumentalist tools, or inductive inferences. It points out, initially, that such aspirations are similar to the now-discredited inductivist approach to science. On the positive side, Big Data may permit larger sample sizes, cheaper and more extensive testing of theories, and the continuous assessment of theories. On the negative side, data-driven science encourages passive data collection, as opposed to experimentation and testing, and hornswoggling ("unsound statistical fiddling"). The roles of theory and data in inductive algorithms, statistical modeling, and scientific discoveries are analyzed, and it is argued that theory is needed at every turn. Data-driven science is a chimera.
    Theme
    Data Mining
  20. Wong, S.K.M.; Butz, C.J.; Xiang, X.: Automated database schema design using mined data dependencies (1998) 0.02
    0.018104734 = product of:
      0.072418936 = sum of:
        0.072418936 = weight(_text_:data in 2897) [ClassicSimilarity], result of:
          0.072418936 = score(doc=2897,freq=12.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.59902847 = fieldWeight in 2897, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2897)
      0.25 = coord(1/4)
    
    Abstract
    Data dependencies are used in database schema design to enforce the correctness of a database as well as to reduce redundant data. These dependencies are usually determined from the semantics of the attributes and are then enforced upon the relations. Describes a bottom-up procedure for discovering multivalued dependencies in observed data without knowing a priori the relationships among the attributes. The proposed algorithm is an application of the technique designed for learning conditional independencies in probabilistic reasoning. A prototype system for automated database schema design has been implemented. Experiments were carried out to demonstrate both the effectiveness and efficiency of the method
    Footnote
    Contribution to a special issue devoted to knowledge discovery and data mining
    Theme
    Data Mining

Years

Classifications