Search (3 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Data Mining"
  • × year_i:[2000 TO 2010}
  1. Classification, automation, and new media : Proceedings of the 24th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Passau, March 15 - 17, 2000 (2002) 0.02
    0.015368836 = product of:
      0.07684418 = sum of:
        0.07684418 = weight(_text_:index in 5997) [ClassicSimilarity], result of:
          0.07684418 = score(doc=5997,freq=4.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.3413878 = fieldWeight in 5997, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
      0.2 = coord(1/5)
    
    Content
    Data Analysis, Statistics, and Classification.- Pattern Recognition and Automation.- Data Mining, Information Processing, and Automation.- New Media, Web Mining, and Automation.- Applications in Management Science, Finance, and Marketing.- Applications in Medicine, Biology, Archaeology, and Others.- Author Index.- Subject Index.
  2. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.014277214 = product of:
      0.035693035 = sum of:
        0.021734813 = weight(_text_:index in 1789) [ClassicSimilarity], result of:
          0.021734813 = score(doc=1789,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.09655905 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.01395822 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
          0.01395822 = score(doc=1789,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.07738023 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
      0.4 = coord(2/5)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
  3. Wang, W.M.; Cheung, C.F.; Lee, W.B.; Kwok, S.K.: Mining knowledge from natural language texts using fuzzy associated concept mapping (2008) 0.01
    0.008693925 = product of:
      0.043469626 = sum of:
        0.043469626 = weight(_text_:index in 2121) [ClassicSimilarity], result of:
          0.043469626 = score(doc=2121,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.1931181 = fieldWeight in 2121, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=2121)
      0.2 = coord(1/5)
    
    Abstract
    Natural Language Processing (NLP) techniques have been successfully used to automatically extract information from unstructured text through a detailed analysis of their content, often to satisfy particular information needs. In this paper, an automatic concept map construction technique, Fuzzy Association Concept Mapping (FACM), is proposed for the conversion of abstracted short texts into concept maps. The approach consists of a linguistic module and a recommendation module. The linguistic module is a text mining method that does not require the use to have any prior knowledge about using NLP techniques. It incorporates rule-based reasoning (RBR) and case based reasoning (CBR) for anaphoric resolution. It aims at extracting the propositions in text so as to construct a concept map automatically. The recommendation module is arrived at by adopting fuzzy set theories. It is an interactive process which provides suggestions of propositions for further human refinement of the automatically generated concept maps. The suggested propositions are relationships among the concepts which are not explicitly found in the paragraphs. This technique helps to stimulate individual reflection and generate new knowledge. Evaluation was carried out by using the Science Citation Index (SCI) abstract database and CNET News as test data, which are well known databases and the quality of the text is assured. Experimental results show that the automatically generated concept maps conform to the outputs generated manually by domain experts, since the degree of difference between them is proportionally small. The method provides users with the ability to convert scientific and short texts into a structured format which can be easily processed by computer. Moreover, it provides knowledge workers with extra time to re-think their written text and to view their knowledge from another angle.