Search (47 results, page 1 of 3)

  • × language_ss:"e"
  • × theme_ss:"Data Mining"
  • × year_i:[2010 TO 2020}
  1. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.02
    0.019641168 = product of:
      0.07856467 = sum of:
        0.07856467 = product of:
          0.11784701 = sum of:
            0.012090176 = weight(_text_:a in 2338) [ClassicSimilarity], result of:
              0.012090176 = score(doc=2338,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21843673 = fieldWeight in 2338, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
            0.105756834 = weight(_text_:z in 2338) [ClassicSimilarity], result of:
              0.105756834 = score(doc=2338,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41278675 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
    Type
    a
  2. Sarnikar, S.; Zhang, Z.; Zhao, J.L.: Query-performance prediction for effective query routing in domain-specific repositories (2014) 0.02
    0.016518347 = product of:
      0.06607339 = sum of:
        0.06607339 = product of:
          0.09911008 = sum of:
            0.008461362 = weight(_text_:a in 1326) [ClassicSimilarity], result of:
              0.008461362 = score(doc=1326,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 1326, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
            0.09064872 = weight(_text_:z in 1326) [ClassicSimilarity], result of:
              0.09064872 = score(doc=1326,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.35381722 = fieldWeight in 1326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The effective use of corporate memory is becoming increasingly important because every aspect of e-business requires access to information repositories. Unfortunately, less-than-satisfying effectiveness in state-of-the-art information-retrieval techniques is well known, even for some of the best search engines such as Google. In this study, the authors resolve this retrieval ineffectiveness problem by developing a new framework for predicting query performance, which is the first step toward better retrieval effectiveness. Specifically, they examine the relationship between query performance and query context. A query context consists of the query itself, the document collection, and the interaction between the two. The authors first analyze the characteristics of query context and develop various features for predicting query performance. Then, they propose a context-sensitive model for predicting query performance based on the characteristics of the query and the document collection. Finally, they validate this model with respect to five real-world collections of documents and demonstrate its utility in routing queries to the correct repository with high accuracy.
    Type
    a
  3. Ma, Z.; Sun, A.; Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter (2013) 0.01
    0.014029406 = product of:
      0.056117624 = sum of:
        0.056117624 = product of:
          0.084176436 = sum of:
            0.00863584 = weight(_text_:a in 967) [ClassicSimilarity], result of:
              0.00863584 = score(doc=967,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15602624 = fieldWeight in 967, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
            0.075540595 = weight(_text_:z in 967) [ClassicSimilarity], result of:
              0.075540595 = score(doc=967,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro-F1 measure. We also observe that contextual features are more effective than content features.
    Type
    a
  4. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.013904001 = product of:
      0.055616003 = sum of:
        0.055616003 = product of:
          0.083424 = sum of:
            0.007883408 = weight(_text_:a in 2345) [ClassicSimilarity], result of:
              0.007883408 = score(doc=2345,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 2345, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
            0.075540595 = weight(_text_:z in 2345) [ClassicSimilarity], result of:
              0.075540595 = score(doc=2345,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 2345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Type
    a
  5. Suakkaphong, N.; Zhang, Z.; Chen, H.: Disease named entity recognition using semisupervised learning and conditional random fields (2011) 0.01
    0.0137652885 = product of:
      0.055061154 = sum of:
        0.055061154 = product of:
          0.08259173 = sum of:
            0.007051134 = weight(_text_:a in 4367) [ClassicSimilarity], result of:
              0.007051134 = score(doc=4367,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 4367, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
            0.075540595 = weight(_text_:z in 4367) [ClassicSimilarity], result of:
              0.075540595 = score(doc=4367,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 4367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Information extraction is an important text-mining task that aims at extracting prespecified types of information from large text collections and making them available in structured representations such as databases. In the biomedical domain, information extraction can be applied to help biologists make the most use of their digital-literature archives. Currently, there are large amounts of biomedical literature that contain rich information about biomedical substances. Extracting such knowledge requires a good named entity recognition technique. In this article, we combine conditional random fields (CRFs), a state-of-the-art sequence-labeling algorithm, with two semisupervised learning techniques, bootstrapping and feature sampling, to recognize disease names from biomedical literature. Two data-processing strategies for each technique also were analyzed: one sequentially processing unlabeled data partitions and another one processing unlabeled data partitions in a round-robin fashion. The experimental results showed the advantage of semisupervised learning techniques given limited labeled training data. Specifically, CRFs with bootstrapping implemented in sequential fashion outperformed strictly supervised CRFs for disease name recognition. The project was supported by NIH/NLM Grant R33 LM07299-01, 2002-2005.
    Type
    a
  6. Zhang, Z.; Li, Q.; Zeng, D.; Ga, H.: Extracting evolutionary communities in community question answering (2014) 0.01
    0.0137652885 = product of:
      0.055061154 = sum of:
        0.055061154 = product of:
          0.08259173 = sum of:
            0.007051134 = weight(_text_:a in 1286) [ClassicSimilarity], result of:
              0.007051134 = score(doc=1286,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 1286, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
            0.075540595 = weight(_text_:z in 1286) [ClassicSimilarity], result of:
              0.075540595 = score(doc=1286,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 1286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    With the rapid growth of Web 2.0, community question answering (CQA) has become a prevalent information seeking channel, in which users form interactive communities by posting questions and providing answers. Communities may evolve over time, because of changes in users' interests, activities, and new users joining the network. To better understand user interactions in CQA communities, it is necessary to analyze the community structures and track community evolution over time. Existing work in CQA focuses on question searching or content quality detection, and the important problems of community extraction and evolutionary pattern detection have not been studied. In this article, we propose a probabilistic community model (PCM) to extract overlapping community structures and capture their evolution patterns in CQA. The empirical results show that our algorithm appears to improve the community extraction quality. We show empirically, using the iPhone data set, that interesting community evolution patterns can be discovered, with each evolution pattern reflecting the variation of users' interests over time. Our analysis suggests that individual users could benefit to gain comprehensive information from tracking the transition of products. We also show that the communities provide a decision-making basis for business.
    Type
    a
  7. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.006974311 = product of:
      0.027897244 = sum of:
        0.027897244 = product of:
          0.041845866 = sum of:
            0.009327774 = weight(_text_:a in 5011) [ClassicSimilarity], result of:
              0.009327774 = score(doc=5011,freq=14.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.1685276 = fieldWeight in 5011, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
            0.032518093 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.032518093 = score(doc=5011,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Type
    a
  8. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.0067335833 = product of:
      0.026934333 = sum of:
        0.026934333 = product of:
          0.0404015 = sum of:
            0.007883408 = weight(_text_:a in 668) [ClassicSimilarity], result of:
              0.007883408 = score(doc=668,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 668, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
            0.032518093 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.032518093 = score(doc=668,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Type
    a
  9. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.006594871 = product of:
      0.026379485 = sum of:
        0.026379485 = product of:
          0.039569225 = sum of:
            0.007051134 = weight(_text_:a in 1605) [ClassicSimilarity], result of:
              0.007051134 = score(doc=1605,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 1605, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
            0.032518093 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.032518093 = score(doc=1605,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
    Type
    a
  10. Ebrahimi, M.; ShafieiBavani, E.; Wong, R.; Chen, F.: Twitter user geolocation by filtering of highly mentioned users (2018) 0.00
    0.0011148823 = product of:
      0.004459529 = sum of:
        0.004459529 = product of:
          0.013378588 = sum of:
            0.013378588 = weight(_text_:a in 4286) [ClassicSimilarity], result of:
              0.013378588 = score(doc=4286,freq=20.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.24171482 = fieldWeight in 4286, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4286)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Geolocated social media data provide a powerful source of information about places and regional human behavior. Because only a small amount of social media data have been geolocation-annotated, inference techniques play a substantial role to increase the volume of annotated data. Conventional research in this area has been based on the text content of posts from a given user or the social network of the user, with some recent crossovers between the text- and network-based approaches. This paper proposes a novel approach to categorize highly-mentioned users (celebrities) into Local and Global types, and consequently use Local celebrities as location indicators. A label propagation algorithm is then used over the refined social network for geolocation inference. Finally, we propose a hybrid approach by merging a text-based method as a back-off strategy into our network-based approach. Empirical experiments over three standard Twitter benchmark data sets demonstrate that our approach outperforms state-of-the-art user geolocation methods.
    Type
    a
  11. Ekbia, H.; Mattioli, M.; Kouper, I.; Arave, G.; Ghazinejad, A.; Bowman, T.; Suri, V.R.; Tsou, A.; Weingart, S.; Sugimoto, C.R.: Big data, bigger dilemmas : a critical review (2015) 0.00
    0.0010992887 = product of:
      0.004397155 = sum of:
        0.004397155 = product of:
          0.013191464 = sum of:
            0.013191464 = weight(_text_:a in 2155) [ClassicSimilarity], result of:
              0.013191464 = score(doc=2155,freq=28.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23833402 = fieldWeight in 2155, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2155)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The recent interest in Big Data has generated a broad range of new academic, corporate, and policy practices along with an evolving debate among its proponents, detractors, and skeptics. While the practices draw on a common set of tools, techniques, and technologies, most contributions to the debate come either from a particular disciplinary perspective or with a focus on a domain-specific issue. A close examination of these contributions reveals a set of common problematics that arise in various guises and in different places. It also demonstrates the need for a critical synthesis of the conceptual and practical dilemmas surrounding Big Data. The purpose of this article is to provide such a synthesis by drawing on relevant writings in the sciences, humanities, policy, and trade literature. In bringing these diverse literatures together, we aim to shed light on the common underlying issues that concern and affect all of these areas. By contextualizing the phenomenon of Big Data within larger socioeconomic developments, we also seek to provide a broader understanding of its drivers, barriers, and challenges. This approach allows us to identify attributes of Big Data that require more attention-autonomy, opacity, generativity, disparity, and futurity-leading to questions and ideas for moving beyond dilemmas.
    Type
    a
  12. Berendt, B.; Krause, B.; Kolbe-Nusser, S.: Intelligent scientific authoring tools : interactive data mining for constructive uses of citation networks (2010) 0.00
    0.0010576702 = product of:
      0.004230681 = sum of:
        0.004230681 = product of:
          0.012692042 = sum of:
            0.012692042 = weight(_text_:a in 4226) [ClassicSimilarity], result of:
              0.012692042 = score(doc=4226,freq=18.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22931081 = fieldWeight in 4226, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4226)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Many powerful methods and tools exist for extracting meaning from scientific publications, their texts, and their citation links. However, existing proposals often neglect a fundamental aspect of learning: that understanding and learning require an active and constructive exploration of a domain. In this paper, we describe a new method and a tool that use data mining and interactivity to turn the typical search and retrieve dialogue, in which the user asks questions and a system gives answers, into a dialogue that also involves sense-making, in which the user has to become active by constructing a bibliography and a domain model of the search term(s). This model starts from an automatically generated and annotated clustering solution that is iteratively modified by users. The tool is part of an integrated authoring system covering all phases from search through reading and sense-making to writing. Two evaluation studies demonstrate the usability of this interactive and constructive approach, and they show that clusters and groups represent identifiable sub-topics.
    Type
    a
  13. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.00
    9.97181E-4 = product of:
      0.003988724 = sum of:
        0.003988724 = product of:
          0.011966172 = sum of:
            0.011966172 = weight(_text_:a in 3205) [ClassicSimilarity], result of:
              0.011966172 = score(doc=3205,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.2161963 = fieldWeight in 3205, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
    Type
    a
  14. Maaten, L. van den; Hinton, G.: Visualizing non-metric similarities in multiple maps (2012) 0.00
    9.97181E-4 = product of:
      0.003988724 = sum of:
        0.003988724 = product of:
          0.011966172 = sum of:
            0.011966172 = weight(_text_:a in 3884) [ClassicSimilarity], result of:
              0.011966172 = score(doc=3884,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.2161963 = fieldWeight in 3884, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3884)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Techniques for multidimensional scaling visualize objects as points in a low-dimensional metric map. As a result, the visualizations are subject to the fundamental limitations of metric spaces. These limitations prevent multidimensional scaling from faithfully representing non-metric similarity data such as word associations or event co-occurrences. In particular, multidimensional scaling cannot faithfully represent intransitive pairwise similarities in a visualization, and it cannot faithfully visualize "central" objects. In this paper, we present an extension of a recently proposed multidimensional scaling technique called t-SNE. The extension aims to address the problems of traditional multidimensional scaling techniques when these techniques are used to visualize non-metric similarities. The new technique, called multiple maps t-SNE, alleviates these problems by constructing a collection of maps that reveal complementary structure in the similarity data. We apply multiple maps t-SNE to a large data set of word association data and to a data set of NIPS co-authorships, demonstrating its ability to successfully visualize non-metric similarities.
    Type
    a
  15. Varathan, K.D.; Giachanou, A.; Crestani, F.: Comparative opinion mining : a review (2017) 0.00
    9.7441534E-4 = product of:
      0.0038976613 = sum of:
        0.0038976613 = product of:
          0.011692984 = sum of:
            0.011692984 = weight(_text_:a in 3540) [ClassicSimilarity], result of:
              0.011692984 = score(doc=3540,freq=22.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21126054 = fieldWeight in 3540, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3540)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Opinion mining refers to the use of natural language processing, text analysis, and computational linguistics to identify and extract subjective information in textual material. Opinion mining, also known as sentiment analysis, has received a lot of attention in recent times, as it provides a number of tools to analyze public opinion on a number of different topics. Comparative opinion mining is a subfield of opinion mining which deals with identifying and extracting information that is expressed in a comparative form (e.g., "paper X is better than the Y"). Comparative opinion mining plays a very important role when one tries to evaluate something because it provides a reference point for the comparison. This paper provides a review of the area of comparative opinion mining. It is the first review that cover specifically this topic as all previous reviews dealt mostly with general opinion mining. This survey covers comparative opinion mining from two different angles. One from the perspective of techniques and the other from the perspective of comparative opinion elements. It also incorporates preprocessing tools as well as data set that were used by past researchers that can be useful to future researchers in the field of comparative opinion mining.
    Type
    a
  16. Derek Doran, D.; Gokhale, S.S.: ¬A classification framework for web robots (2012) 0.00
    9.401512E-4 = product of:
      0.003760605 = sum of:
        0.003760605 = product of:
          0.011281814 = sum of:
            0.011281814 = weight(_text_:a in 505) [ClassicSimilarity], result of:
              0.011281814 = score(doc=505,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.20383182 = fieldWeight in 505, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=505)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The behavior of modern web robots varies widely when they crawl for different purposes. In this article, we present a framework to classify these web robots from two orthogonal perspectives, namely, their functionality and the types of resources they consume. Applying the classification framework to a year-long access log from the UConn SoE web server, we present trends that point to significant differences in their crawling behavior.
    Type
    a
  17. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.00
    8.63584E-4 = product of:
      0.003454336 = sum of:
        0.003454336 = product of:
          0.010363008 = sum of:
            0.010363008 = weight(_text_:a in 1205) [ClassicSimilarity], result of:
              0.010363008 = score(doc=1205,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.18723148 = fieldWeight in 1205, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
    Type
    a
  18. Tu, Y.-N.; Hsu, S.-L.: Constructing conceptual trajectory maps to trace the development of research fields (2016) 0.00
    8.309842E-4 = product of:
      0.0033239368 = sum of:
        0.0033239368 = product of:
          0.0099718105 = sum of:
            0.0099718105 = weight(_text_:a in 3059) [ClassicSimilarity], result of:
              0.0099718105 = score(doc=3059,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.18016359 = fieldWeight in 3059, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3059)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    This study proposes a new method to construct and trace the trajectory of conceptual development of a research field by combining main path analysis, citation analysis, and text-mining techniques. Main path analysis, a method used commonly to trace the most critical path in a citation network, helps describe the developmental trajectory of a research field. This study extends the main path analysis method and applies text-mining techniques in the new method, which reflects the trajectory of conceptual development in an academic research field more accurately than citation frequency, which represents only the articles examined. Articles can be merged based on similarity of concepts, and by merging concepts the history of a research field can be described more precisely. The new method was applied to the "h-index" and "text mining" fields. The precision, recall, and F-measures of the h-index were 0.738, 0.652, and 0.658 and those of text-mining were 0.501, 0.653, and 0.551, respectively. Last, this study not only establishes the conceptual trajectory map of a research field, but also recommends keywords that are more precise than those used currently by researchers. These precise keywords could enable researchers to gather related works more quickly than before.
    Type
    a
  19. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.00
    8.309842E-4 = product of:
      0.0033239368 = sum of:
        0.0033239368 = product of:
          0.0099718105 = sum of:
            0.0099718105 = weight(_text_:a in 5053) [ClassicSimilarity], result of:
              0.0099718105 = score(doc=5053,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.18016359 = fieldWeight in 5053, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5053)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
    Type
    a
  20. Blake, C.: Text mining (2011) 0.00
    8.2263234E-4 = product of:
      0.0032905294 = sum of:
        0.0032905294 = product of:
          0.009871588 = sum of:
            0.009871588 = weight(_text_:a in 1599) [ClassicSimilarity], result of:
              0.009871588 = score(doc=1599,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.17835285 = fieldWeight in 1599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1599)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Type
    a

Types

  • a 45
  • el 6
  • m 2
  • s 1
  • More… Less…