Search (7 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Elektronisches Publizieren"
  • × theme_ss:"Informetrie"
  1. Walters, W.H.; Linvill, A.C.: Bibliographic index coverage of open-access journals in six subject areas (2011) 0.03
    0.03491371 = product of:
      0.087284274 = sum of:
        0.07768321 = weight(_text_:index in 4635) [ClassicSimilarity], result of:
          0.07768321 = score(doc=4635,freq=6.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.418113 = fieldWeight in 4635, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4635)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.028803186 = score(doc=4635,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4635)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    We investigate the extent to which open-access (OA) journals and articles in biology, computer science, economics, history, medicine, and psychology are indexed in each of 11 bibliographic databases. We also look for variations in index coverage by journal subject, journal size, publisher type, publisher size, date of first OA issue, region of publication, language of publication, publication fee, and citation impact factor. Two databases, Biological Abstracts and PubMed, provide very good coverage of the OA journal literature, indexing 60 to 63% of all OA articles in their disciplines. Five databases provide moderately good coverage (22-41%), and four provide relatively poor coverage (0-12%). OA articles in biology journals, English-only journals, high-impact journals, and journals that charge publication fees of $1,000 or more are especially likely to be indexed. Conversely, articles from OA publishers in Africa, Asia, or Central/South America are especially unlikely to be indexed. Four of the 11 databases index commercially published articles at a substantially higher rate than articles published by universities, scholarly societies, nonprofit publishers, or governments. Finally, three databases-EBSCO Academic Search Complete, ProQuest Research Library, and Wilson OmniFile-provide less comprehensive coverage of OA articles than of articles in comparable subscription journals.
  2. Costas, R.; Perianes-Rodríguez, A.; Ruiz-Castillo, J.: On the quest for currencies of science : field "exchange rates" for citations and Mendeley readership (2017) 0.01
    0.013616532 = product of:
      0.03404133 = sum of:
        0.02636048 = weight(_text_:system in 4051) [ClassicSimilarity], result of:
          0.02636048 = score(doc=4051,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.19684705 = fieldWeight in 4051, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=4051)
        0.0076808496 = product of:
          0.023042548 = sum of:
            0.023042548 = weight(_text_:22 in 4051) [ClassicSimilarity], result of:
              0.023042548 = score(doc=4051,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.15476047 = fieldWeight in 4051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4051)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Purpose The introduction of "altmetrics" as new tools to analyze scientific impact within the reward system of science has challenged the hegemony of citations as the predominant source for measuring scientific impact. Mendeley readership has been identified as one of the most important altmetric sources, with several features that are similar to citations. The purpose of this paper is to perform an in-depth analysis of the differences and similarities between the distributions of Mendeley readership and citations across fields. Design/methodology/approach The authors analyze two issues by using in each case a common analytical framework for both metrics: the shape of the distributions of readership and citations, and the field normalization problem generated by differences in citation and readership practices across fields. In the first issue the authors use the characteristic scores and scales method, and in the second the measurement framework introduced in Crespo et al. (2013). Findings There are three main results. First, the citations and Mendeley readership distributions exhibit a strikingly similar degree of skewness in all fields. Second, the results on "exchange rates (ERs)" for Mendeley readership empirically supports the possibility of comparing readership counts across fields, as well as the field normalization of readership distributions using ERs as normalization factors. Third, field normalization using field mean readerships as normalization factors leads to comparably good results. Originality/value These findings open up challenging new questions, particularly regarding the possibility of obtaining conflicting results from field normalized citation and Mendeley readership indicators; this suggests the need for better determining the role of the two metrics in capturing scientific recognition.
    Date
    20. 1.2015 18:30:22
    Footnote
    Beitrag eines Special issue on "The reward system of science".
  3. Frandsen, T.F.: ¬The integration of open access journals in the scholarly communication system : three science fields (2009) 0.01
    0.00968546 = product of:
      0.048427295 = sum of:
        0.048427295 = weight(_text_:system in 4210) [ClassicSimilarity], result of:
          0.048427295 = score(doc=4210,freq=6.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.36163113 = fieldWeight in 4210, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4210)
      0.2 = coord(1/5)
    
    Abstract
    The greatest number of open access journals (OAJs) is found in the sciences and their influence is growing. However, there are only a few studies on the acceptance and thereby integration of these OAJs in the scholarly communication system. Even fewer studies provide insight into the differences across disciplines. This study is an analysis of the citing behaviour in journals within three science fields: biology, mathematics, and pharmacy and pharmacology. It is a statistical analysis of OAJs as well as non-OAJs including both the citing and cited side of the journal to journal citations. The multivariate linear regression reveals many similarities in citing behaviour across fields and media. But it also points to great differences in the integration of OAJs. The integration of OAJs in the scholarly communication system varies considerably across fields. The implications for bibliometric research are discussed.
  4. Zhang, Y.: ¬The effect of open access on citation impact : a comparison study based on Web citation analysis (2006) 0.01
    0.008069678 = product of:
      0.040348392 = sum of:
        0.040348392 = weight(_text_:context in 5071) [ClassicSimilarity], result of:
          0.040348392 = score(doc=5071,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 5071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5071)
      0.2 = coord(1/5)
    
    Abstract
    The academic impact advantage of Open Access (OA) is a prominent topic of debate in the library and publishing communities. Web citations have been proposed as comparable to, even replacements for, bibliographic citations in assessing the academic impact of journals. In our study, we compare Web citations to articles in an OA journal, the Journal of Computer-Mediated Communication (JCMC), and a traditional access journal, New Media & Society (NMS), in the communication discipline. Web citation counts for JCMC are significantly higher than those for NMS. Furthermore, JCMC receives significantly higher Web citations from the formal scholarly publications posted on the Web than NMS does. The types of Web citations for journal articles were also examined. In the Web context, the impact of a journal can be assessed using more than one type of source: citations from scholarly articles, teaching materials and non-authoritative documents. The OA journal has higher percentages of citations from the third type, which suggests that, in addition to the research community, the impact advantage of open access is also detectable among ordinary users participating in Web-based academic communication. Moreover, our study also proves that the OA journal has impact advantage in developing countries. Compared with NMS, JCMC has more Web citations from developing countries.
  5. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.01
    0.006523886 = product of:
      0.03261943 = sum of:
        0.03261943 = weight(_text_:system in 1065) [ClassicSimilarity], result of:
          0.03261943 = score(doc=1065,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.2435858 = fieldWeight in 1065, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
      0.2 = coord(1/5)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  6. Moed, H.F.; Halevi, G.: On full text download and citation distributions in scientific-scholarly journals (2016) 0.00
    0.0019202124 = product of:
      0.009601062 = sum of:
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.028803186 = score(doc=2646,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2646)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 1.2016 14:11:17
  7. Ortega, J.L.: ¬The presence of academic journals on Twitter and its relationship with dissemination (tweets) and research impact (citations) (2017) 0.00
    0.0019202124 = product of:
      0.009601062 = sum of:
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 4410) [ClassicSimilarity], result of:
              0.028803186 = score(doc=4410,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 4410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4410)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    20. 1.2015 18:30:22