Search (52 results, page 2 of 3)

  • × language_ss:"e"
  • × theme_ss:"Information"
  1. Dillon, A.; Vaughan, M.: "It's the journey and the destination" : shape and the emergent property of genre in evaluating digital documents (1997) 0.01
    0.005395815 = product of:
      0.02158326 = sum of:
        0.02158326 = product of:
          0.04316652 = sum of:
            0.04316652 = weight(_text_:22 in 2889) [ClassicSimilarity], result of:
              0.04316652 = score(doc=2889,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2708308 = fieldWeight in 2889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2889)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 2.1999 20:10:22
  2. Crowe, M.; Beeby, R.; Gammack, J.: Constructing systems and information : a process view (1996) 0.01
    0.005395815 = product of:
      0.02158326 = sum of:
        0.02158326 = product of:
          0.04316652 = sum of:
            0.04316652 = weight(_text_:22 in 6964) [ClassicSimilarity], result of:
              0.04316652 = score(doc=6964,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2708308 = fieldWeight in 6964, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6964)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    25.12.2001 13:22:30
  3. Meadows, J.: Understanding information (2001) 0.01
    0.005395815 = product of:
      0.02158326 = sum of:
        0.02158326 = product of:
          0.04316652 = sum of:
            0.04316652 = weight(_text_:22 in 3067) [ClassicSimilarity], result of:
              0.04316652 = score(doc=3067,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2708308 = fieldWeight in 3067, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3067)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    15. 6.2002 19:22:01
  4. Westbrook, L.: Information myths and intimate partner violence : sources, contexts, and consequences (2009) 0.01
    0.005395815 = product of:
      0.02158326 = sum of:
        0.02158326 = product of:
          0.04316652 = sum of:
            0.04316652 = weight(_text_:22 in 2790) [ClassicSimilarity], result of:
              0.04316652 = score(doc=2790,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2708308 = fieldWeight in 2790, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2790)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2009 19:16:44
  5. Badia, A.: Data, information, knowledge : an information science analysis (2014) 0.01
    0.005395815 = product of:
      0.02158326 = sum of:
        0.02158326 = product of:
          0.04316652 = sum of:
            0.04316652 = weight(_text_:22 in 1296) [ClassicSimilarity], result of:
              0.04316652 = score(doc=1296,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2708308 = fieldWeight in 1296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1296)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16. 6.2014 19:22:57
  6. Fuchs-Kittowski, K.: The influence of philosophy on the understanding of computing and information (2014) 0.00
    0.0049464838 = product of:
      0.019785935 = sum of:
        0.019785935 = product of:
          0.03957187 = sum of:
            0.03957187 = weight(_text_:software in 3397) [ClassicSimilarity], result of:
              0.03957187 = score(doc=3397,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.21915624 = fieldWeight in 3397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3397)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    What we consider to be the influence of philosophy on scientific thinking largely depends on how science perceives itself. The understanding and conscious human-oriented design of the relationship between the computer and the creatively active person - i.e. the design of a formal model and the non-formal, natural and social environment - is always more readily recognized as the fundamental philosophical, theoretical and methodological problem of informatics (computer science and information systems). Informatics/computer science results from the necessity to overcome the tension between technology-based automation, which is based on a purely syntactic interpretation and transformation of information, and creative and active people who carry out semantic information processing based on their knowledge. It is this tension that requires the development and use of user-oriented software and the formal operations to be integrated into complex human work processes. Conceptual strategies that foster the development and integration of modern information technologies into social organization are currently the topic of vivid philosophical and methodological discussions, reflecting the influence of different philosophical schools. The utilization of information technologies has significantly changed both employee working conditions and the relationship between organizations and their environment. The development of humanity-oriented computer science is a necessary condition for integrating computational systems into social contexts and for largely adapting these systems to the users' needs.
  7. Haggar, E.: Fighting fake news : exploring George Orwell's relationship to information literacy (2020) 0.00
    0.0049464838 = product of:
      0.019785935 = sum of:
        0.019785935 = product of:
          0.03957187 = sum of:
            0.03957187 = weight(_text_:software in 5978) [ClassicSimilarity], result of:
              0.03957187 = score(doc=5978,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.21915624 = fieldWeight in 5978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5978)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this paper is to analyse George Orwell's diaries through an information literacy lens. Orwell is well known for his dedication to freedom of speech and objective truth, and his novel Nineteen Eighty-Four is often used as a lens through which to view the fake news phenomenon. This paper will examine Orwell's diaries in relation to UNESCO's Five Laws of Media and Information Literacy to examine how information literacy concepts can be traced in historical documents. Design/methodology/approach This paper will use a content analysis method to explore Orwell's relationship to information literacy. Two of Orwell's political diaries from the period 1940-42 were coded for key themes related to the ways in which Orwell discusses and evaluates information and news. These themes were then compared to UNESCO Five Laws of Media and Information Literacy. Textual analysis software NVivo 12 was used to perform keyword searches and word frequency queries in the digitised diaries. Findings The findings show that while Orwell's diaries and the Five Laws did not share terminology, they did share ideas on bias and access to information. They also extend the history of information literacy research and practice by illustrating how concerns about the need to evaluate information sources are represented within historical literature. Originality/value This paper combines historical research with textual analysis to bring a unique historical perspective to information literacy, demonstrating that "fake news" is not a recent phenomenon, and that the tools to fight it may also lie in historical research.
  8. Rocchi, P.; Resca, A.: ¬The creativity of authors in defining the concept of information (2018) 0.00
    0.0049464838 = product of:
      0.019785935 = sum of:
        0.019785935 = product of:
          0.03957187 = sum of:
            0.03957187 = weight(_text_:software in 296) [ClassicSimilarity], result of:
              0.03957187 = score(doc=296,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.21915624 = fieldWeight in 296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=296)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The concept of information is central to several fields of research and professional practice. So many definitions have been put forward that complete inventory is unachievable while authors have failed to reach a consensus. In the face of the present impasse, innovative proposals could rouse information theorists to action, but literature surveys tend to emphasize the common traits of definitions. Reviewers are inclined to iron out originality in information models; thus the purpose of this paper is to discover the creativity of authors attempting to define the concept of information and to stimulate the progress of studies in this field. Design/methodology/approach Because the present inquiry could be influenced and distorted by personal criteria and opinions, the authors have adopted precise criteria and guidelines. It could be said the present approach approximates a statistical methodology. Findings The findings of this paper include (1) The authors found 32 original definitions of information which sometimes current surveys have overlooked. (2) The authors found a relation between information theories and advances in information technology. (3) Overall, the authors found that researchers take account of a wide variety of perspectives yet overlook the notion of information as used by computing practitioners such as electronic engineers and software developers. Research limitations/implications The authors comment on some limitations of the procedure that was followed. Results 1 and 3 open up new possibilities for theoretical research in the information domain. Originality/value This is an attempt to conduct a bibliographical inquiry driven by objective and scientific criteria; its value lies in the fact that final report has not been influenced by personal choice or arbitrary viewpoints.
  9. Verdi, M.P.; Kulhavy, R.W.; Stock, W.A.; Rittscho, K.A.; Savenye, W.: Why maps improve memory for text : the influence of structural information on working-memory operations (1993) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.03699987 = score(doc=2090,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2000 19:18:18
  10. Fujiwara, Y.; Gotoda, H.: Representation model for relativity of concepts (1995) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 2994) [ClassicSimilarity], result of:
              0.03699987 = score(doc=2994,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 2994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2994)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    International forum on information and documentation. 20(1995) no.1, S.22-30
  11. Allen, B.L.: Visualization and cognitve abilities (1998) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 2340) [ClassicSimilarity], result of:
              0.03699987 = score(doc=2340,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 2340, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2340)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 9.1997 19:16:05
  12. Cole, C.: Activity of understanding a problem during interaction with an 'enabling' information retrieval system : modeling information flow (1999) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 3675) [ClassicSimilarity], result of:
              0.03699987 = score(doc=3675,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 3675, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3675)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 5.1999 14:51:49
  13. Bruce, C.S.: ¬The relational approach : a new model for information literacy (1997) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 408) [ClassicSimilarity], result of:
              0.03699987 = score(doc=408,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 408, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=408)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    New review of information and library research. 3(1997), S.1-22
  14. Essers, J.; Schreinemakers, J.: ¬The conceptions of knowledge and information in knowledge management (1996) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 909) [ClassicSimilarity], result of:
              0.03699987 = score(doc=909,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 909, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=909)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge management: organization competence and methodolgy. Proceedings of the Fourth International ISMICK Symposium, 21-22 October 1996, Netherlands. Ed.: J.F. Schreinemakers
  15. Malsburg, C. von der: Concerning the neuronal code (2018) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 73) [ClassicSimilarity], result of:
              0.03699987 = score(doc=73,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 73, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=73)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    27.12.2020 16:56:22
  16. Cooke, N.A.; Kitzie, V.L.: Outsiders-within-Library and Information Science : reprioritizing the marginalized in critical sociocultural work (2021) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 351) [ClassicSimilarity], result of:
              0.03699987 = score(doc=351,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 351, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=351)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    18. 9.2021 13:22:27
  17. Atran, S.; Medin, D.L.; Ross, N.: Evolution and devolution of knowledge : a tale of two biologies (2004) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 479) [ClassicSimilarity], result of:
              0.03699987 = score(doc=479,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 479, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=479)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    23. 1.2022 10:22:18
  18. Eiriksson, J.M.; Retsloff, J.M.: Librarians in the 'information age' : promoter of change or provider of stability? (2005) 0.00
    0.004360477 = product of:
      0.017441908 = sum of:
        0.017441908 = product of:
          0.034883816 = sum of:
            0.034883816 = weight(_text_:22 in 3012) [ClassicSimilarity], result of:
              0.034883816 = score(doc=3012,freq=4.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.21886435 = fieldWeight in 3012, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3012)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2009 11:23:22
  19. Crane, G.; Jones, A.: Text, information, knowledge and the evolving record of humanity (2006) 0.00
    0.004283781 = product of:
      0.017135125 = sum of:
        0.017135125 = product of:
          0.03427025 = sum of:
            0.03427025 = weight(_text_:software in 1182) [ClassicSimilarity], result of:
              0.03427025 = score(doc=1182,freq=6.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.18979488 = fieldWeight in 1182, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1182)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Consider a sentence such as "the current price of tea in China is 35 cents per pound." In a library with millions of books we might find many statements of the above form that we could capture today with relatively simple rules: rather than pursuing every variation of a statement, programs can wait, like predators at a water hole, for their informational prey to reappear in a standard linguistic pattern. We can make inferences from sentences such as "NAME1 born at NAME2 in DATE" that NAME more likely than not represents a person and NAME a place and then convert the statement into a proposition about a person born at a given place and time. The changing price of tea in China, pedestrian birth and death dates, or other basic statements may not be truth and beauty in the Phaedrus, but a digital library that could plot the prices of various commodities in different markets over time, plot the various lifetimes of individuals, or extract and classify many events would be very useful. Services such as the Syllabus Finder1 and H-Bot2 (which Dan Cohen describes elsewhere in this issue of D-Lib) represent examples of information extraction already in use. H-Bot, in particular, builds on our evolving ability to extract information from very large corpora such as the billions of web pages available through the Google API. Aside from identifying higher order statements, however, users also want to search and browse named entities: they want to read about "C. P. E. Bach" rather than his father "Johann Sebastian" or about "Cambridge, Maryland", without hearing about "Cambridge, Massachusetts", Cambridge in the UK or any of the other Cambridges scattered around the world. Named entity identification is a well-established area with an ongoing literature. The Natural Language Processing Research Group at the University of Sheffield has developed its open source Generalized Architecture for Text Engineering (GATE) for years, while IBM's Unstructured Information Analysis and Search (UIMA) is "available as open source software to provide a common foundation for industry and academia." Powerful tools are thus freely available and more demanding users can draw upon published literature to develop their own systems. Major search engines such as Google and Yahoo also integrate increasingly sophisticated tools to categorize and identify places. The software resources are rich and expanding. The reference works on which these systems depend, however, are ill-suited for historical analysis. First, simple gazetteers and similar authority lists quickly grow too big for useful information extraction. They provide us with potential entities against which to match textual references, but existing electronic reference works assume that human readers can use their knowledge of geography and of the immediate context to pick the right Boston from the Bostons in the Getty Thesaurus of Geographic Names (TGN), but, with the crucial exception of geographic location, the TGN records do not provide any machine readable clues: we cannot tell which Bostons are large or small. If we are analyzing a document published in 1818, we cannot filter out those places that did not yet exist or that had different names: "Jefferson Davis" is not the name of a parish in Louisiana (tgn,2000880) or a county in Mississippi (tgn,2001118) until after the Civil War.
    Although the Alexandria Digital Library provides far richer data than the TGN (5.9 vs. 1.3 million names), its added size lowers, rather than increases, the accuracy of most geographic name identification systems for historical documents: most of the extra 4.6 million names cover low frequency entities that rarely occur in any particular corpus. The TGN is sufficiently comprehensive to provide quite enough noise: we find place names that are used over and over (there are almost one hundred Washingtons) and semantically ambiguous (e.g., is Washington a person or a place?). Comprehensive knowledge sources emphasize recall but lower precision. We need data with which to determine which "Tribune" or "John Brown" a particular passage denotes. Secondly and paradoxically, our reference works may not be comprehensive enough. Human actors come and go over time. Organizations appear and vanish. Even places can change their names or vanish. The TGN does associate the obsolete name Siam with the nation of Thailand (tgn,1000142) - but also with towns named Siam in Iowa (tgn,2035651), Tennessee (tgn,2101519), and Ohio (tgn,2662003). Prussia appears but as a general region (tgn,7016786), with no indication when or if it was a sovereign nation. And if places do point to the same object over time, that object may have very different significance over time: in the foundational works of Western historiography, Herodotus reminds us that the great cities of the past may be small today, and the small cities of today great tomorrow (Hdt. 1.5), while Thucydides stresses that we cannot estimate the past significance of a place by its appearance today (Thuc. 1.10). In other words, we need to know the population figures for the various Washingtons in 1870 if we are analyzing documents from 1870. The foundations have been laid for reference works that provide machine actionable information about entities at particular times in history. The Alexandria Digital Library Gazetteer Content Standard8 represents a sophisticated framework with which to create such resources: places can be associated with temporal information about their foundation (e.g., Washington, DC, founded on 16 July 1790), changes in names for the same location (e.g., Saint Petersburg to Leningrad and back again), population figures at various times and similar historically contingent data. But if we have the software and the data structures, we do not yet have substantial amounts of historical content such as plentiful digital gazetteers, encyclopedias, lexica, grammars and other reference works to illustrate many periods and, even if we do, those resources may not be in a useful form: raw OCR output of a complex lexicon or gazetteer may have so many errors and have captured so little of the underlying structure that the digital resource is useless as a knowledge base. Put another way, human beings are still much better at reading and interpreting the contents of page images than machines. While people, places, and dates are probably the most important core entities, we will find a growing set of objects that we need to identify and track across collections, and each of these categories of objects will require its own knowledge sources. The following section enumerates and briefly describes some existing categories of documents that we need to mine for knowledge. This brief survey focuses on the format of print sources (e.g., highly structured textual "database" vs. unstructured text) to illustrate some of the challenges involved in converting our published knowledge into semantically annotated, machine actionable form.
  20. Philosophy, computing and information science (2014) 0.00
    0.0039571873 = product of:
      0.01582875 = sum of:
        0.01582875 = product of:
          0.0316575 = sum of:
            0.0316575 = weight(_text_:software in 3407) [ClassicSimilarity], result of:
              0.0316575 = score(doc=3407,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.17532499 = fieldWeight in 3407, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3407)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Introduction: Philosophy's Relevance in Computing and Information Science - Ruth Hagengruber and Uwe V.Riss Part I: Philosophy of Computing and Information 1 The Fourth Revolution in our Self-Understanding - Luciano Floridi -- 2 Information Transfer as a Metaphor - Jakob Krebs -- 3 With Aristotle towards a Differentiated Concept of Information? - Uwe Voigt -- 4 The Influence of Philosophy on the Understanding of Computing and Information - Klaus Fuchs-Kittowski -- Part II: Complexity and System Theory 5 The Emergence of Self-Conscious Systems: From Symbolic AI to Embodied Robotics - Klaus Mainzer -- 6 Artificial Intelligence as a New Metaphysical Project - Aziz F. Zambak Part III: Ontology 7 The Relevance of Philosophical Ontology to Information and Computer Science - Barry Smith -- 8 Ontology, its Origins and its Meaning in Information Science - Jens Kohne -- 9 Smart Questions: Steps towards an Ontology of Questions and Answers - Ludwig Jaskolla and Matthias Rugel Part IV: Knowledge Representation 10 Sophisticated Knowledge Representation and Reasoning Requires Philosophy - Selmer Bringsjord, Micah Clark and Joshua Taylor -- 11 On Frames and Theory-Elements of Structuralism Holger Andreas -- 12 Ontological Complexity and Human Culture David J. Saab and Frederico Fonseca Part V: Action Theory 13 Knowledge and Action between Abstraction and Concretion - Uwe V.Riss -- 14 Action-Directing Construction of Reality in Product Creation Using Social Software: Employing Philosophy to Solve Real-World Problems - Kai Holzweifiig and Jens Krüger -- 15 An Action-Theory-Based Treatment ofTemporal Individuals - Tillmann Pross -- 16 Four Rules for Classifying Social Entities - Ludger Jansen Part VI: Info-Computationalism 17 Info-Computationalism and Philosophical Aspects of Research in Information Sciences - Gordana Dodig-Crnkovic -- 18 Pancomputationalism: Theory or Metaphor ? - Vincent C. Mutter Part VII: Ethics 19 The Importance of the Sources of Professional Obligations - Francis C. Dane

Years

Types

  • a 45
  • el 4
  • m 4
  • s 2
  • More… Less…