Search (1091 results, page 1 of 55)

  • × language_ss:"e"
  • × theme_ss:"Informetrie"
  • × type_ss:"a"
  1. Dobrota, M.; Dobrota, M.: ARWU ranking uncertainty and sensitivity : what if the award factor was Excluded? (2016) 0.02
    0.018656865 = product of:
      0.03731373 = sum of:
        0.005354538 = weight(_text_:in in 2652) [ClassicSimilarity], result of:
          0.005354538 = score(doc=2652,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2652)
        0.014215595 = weight(_text_:und in 2652) [ClassicSimilarity], result of:
          0.014215595 = score(doc=2652,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.14692576 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=2652)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.035487194 = score(doc=2652,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 2652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    The Academic Ranking of World Universities (ARWU) uses six university performance indicators, including "Alumni" and "Awards"-the number of alumni and staff winning Nobel Prizes and Fields Medals. These two indicators raised doubts about the reliability of this ranking method because they are difficult to cope with. Recently, a newsletter was published featuring a reduced ARWU ranking list, leaving out Nobel Prize and Fields Medal indicators: the Alternative Ranking (Excluding Award Factor). We used uncertainty and sensitivity analyses to examine and compare the stability and confidence of the official ARWU ranking and the Alternative Ranking. The results indicate that if the ARWU ranking is reduced to the 4-indicator Alternative Ranking, it shows greater certainty and stability in ranking universities.
    Date
    22. 1.2016 14:40:53
    Footnote
    Autoren: Milan Dobrota und Marina Dobrota
  2. Tedd, L.A.: Use of library and information science journals by Master's students in their dissertations : experiences at the University of Wales Aberystwyth (2006) 0.02
    0.018616043 = product of:
      0.05584813 = sum of:
        0.014166778 = weight(_text_:in in 4895) [ClassicSimilarity], result of:
          0.014166778 = score(doc=4895,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 4895, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4895)
        0.041681353 = product of:
          0.083362706 = sum of:
            0.083362706 = weight(_text_:ausbildung in 4895) [ClassicSimilarity], result of:
              0.083362706 = score(doc=4895,freq=2.0), product of:
                0.23429902 = queryWeight, product of:
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.043654136 = queryNorm
                0.35579622 = fieldWeight in 4895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4895)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The purpose of this research is to report on research undertaken into the use made of library and information science (LIS) journals in dissertations written by students undertaking the Master's course in Information and Library Studies at the University of Wales Aberystwyth. Design/methodology/approach - Analysis of the citations of 100 (post 2000) dissertations submitted gives an indication of the range of material used in dissertations. In addition, responses to questionnaires from students provide information about how relevant papers are found from LIS journals. Findings - Journals with a practical bias were cited more than research-oriented journals. Lists of the most "popular" journal titles are included. Originality/value - The research provides a "snapshot" of the use made of LIS journals by Master's students in their dissertations.
    Footnote
    Beitrag in einem Themenheft: UK library and information school: Aberystwyth
    Theme
    Ausbildung
  3. Dees, W.: "Publication power approach" (2013) 0.02
    0.016486328 = product of:
      0.049458984 = sum of:
        0.008834538 = weight(_text_:in in 924) [ClassicSimilarity], result of:
          0.008834538 = score(doc=924,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 924, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=924)
        0.040624447 = weight(_text_:und in 924) [ClassicSimilarity], result of:
          0.040624447 = score(doc=924,freq=12.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.41987535 = fieldWeight in 924, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=924)
      0.33333334 = coord(2/6)
    
    Abstract
    Die Publikationslandschaft der Erziehungswissenschaft ist durch eine enorme Breite undVielfalt sowie zahlreiche Verbindungen in benachbarte Felder gekennzeichnet. Aktuelle Analysen zum Publikationsverhalten von Erziehungswissenschaftlern zeigen, dass diese Hunderte von verschiedenen Zeitschriften und Verlagen zur Veröffentlichung nutzen. Um aus dieser Fülle an Publikationsorten die bedeutendsten zu ermitteln, wird ein neuer Ansatz zur Zeitschriftenbewertung, der "publication power approach" von Holsapple, auf die deutsche Erziehungswissenschaft übertragen. Dieser Ansatz basiert auf dem Publikationsverhalten von Forschern an ausgewählten Institutionen und stellt eine Alternative zu Expertenbefragungen und Zitationsanalysen dar. Der Beitrag stellt wesentlich Ergebnisse zur "publication power" von Zeitschriften und Verlagen der Erziehungswissenschaft vor und diskutiert Vor- und Nachteile dieses Ansatzes im Vergleich zu den herkömmlichen Bewertungsmethoden.
    Series
    Fortschritte in der Wissensorganisation; Bd.12
  4. Ball, R.: Wissenschaftskommunikation im Wandel : die Verwendung von Fragezeichen im Titel von wissenschaftlichen Zeitschriftenbeiträgen in der Medizin, den Lebenswissenschaften und in der Physik von 1966 bis 2005 (2007) 0.02
    0.015306472 = product of:
      0.045919415 = sum of:
        0.008834538 = weight(_text_:in in 635) [ClassicSimilarity], result of:
          0.008834538 = score(doc=635,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 635, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=635)
        0.037084877 = weight(_text_:und in 635) [ClassicSimilarity], result of:
          0.037084877 = score(doc=635,freq=10.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.38329202 = fieldWeight in 635, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=635)
      0.33333334 = coord(2/6)
    
    Abstract
    Die Titel wissenschaftlicher Veröffentlichungen sind von besonderer Bedeutung. Wir haben fast 20 Millionen wissenschaftliche Artikel untersucht und den Anteil von Artikeln mit einem Fragezeichen am Ende des Titels im Laufe der letzten 40 Jahre analysiert. Unsere Studie beschränkte sich auf die Disziplinen Physik, Lebenswissenschaften und Medizin. Dabei haben wir eine deutliche Zunahme der Fragezeichen-Artikel von 50 Prozent auf mehr als 200 Prozent feststellten können. Vor diesem Hintergrund werden im vorliegenden Beitrag die grundsätzlichen Funktionen und Strukturen der Titel wissenschaftlicher Publikationen untersucht. Wir gehen davon aus, dass Marketing-Aspekte die entscheidenden Beweggründe sind für die zunehmende Nutzung von Fragezeichen-Titeln bei wissenschaftlichen Publikationen.
    Source
    Information - Wissenschaft und Praxis. 58(2007) H.6/7, S.371-375
  5. Li, T.-C.: Reference sources in periodicals : research note (1995) 0.01
    0.013715327 = product of:
      0.04114598 = sum of:
        0.01748785 = weight(_text_:in in 5092) [ClassicSimilarity], result of:
          0.01748785 = score(doc=5092,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.29450375 = fieldWeight in 5092, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=5092)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 5092) [ClassicSimilarity], result of:
              0.04731626 = score(doc=5092,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 5092, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5092)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Presents a list of 53 periodicals in 22 subject fields which regularly provide bibliographies of theses, research in progress and patents in their particular subject field. The fields of business, economics, history and literature have most periodical listings of dissertations and theses. Also lists 63 periodicals in 25 sub-disciplines which provide rankings or ratings. Rankings and ratings information predominates in the fields of business, sports and games, finance and banking, and library and information science
  6. Campanario, J.M.: Large increases and decreases in journal impact factors in only one year : the effect of journal self-citations (2011) 0.01
    0.01314725 = product of:
      0.03944175 = sum of:
        0.018740883 = weight(_text_:in in 4187) [ClassicSimilarity], result of:
          0.018740883 = score(doc=4187,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.31560543 = fieldWeight in 4187, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4187)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 4187) [ClassicSimilarity], result of:
              0.04140173 = score(doc=4187,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 4187, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4187)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    I studied the factors (citations, self-citations, and number of articles) that influenced large changes in only 1 year in the impact factors (IFs) of journals. A set of 360 instances of journals with large increases or decreases in their IFs from a given year to the following was selected from journals in the Journal Citation Reports from 1998 to 2007 (40 journals each year). The main factor influencing large changes was the change in the number of citations. About 54% of the increases and 42% of the decreases in the journal IFs were associated with changes in the journal self-citations.
    Date
    22. 1.2011 12:53:00
  7. Pichappan, P.; Sangaranachiyar, S.: Ageing approach to scientific eponyms (1996) 0.01
    0.012645634 = product of:
      0.0379369 = sum of:
        0.014278769 = weight(_text_:in in 80) [ClassicSimilarity], result of:
          0.014278769 = score(doc=80,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24046129 = fieldWeight in 80, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=80)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 80) [ClassicSimilarity], result of:
              0.04731626 = score(doc=80,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 80, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=80)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    There is a decrease in the incidence of explicit references to a paper over time, hence the assumption that information ages. In a study which attempts to discover whether information really ages it is necessary to include eponyms, anonyms and footnote references. Reports a pilot study which demonstrates that there is an increase over time in the frequency of use of eponyms
    Footnote
    Report presented at the 16th National Indian Association of Special Libraries and Information Centres Seminar Special Interest Group Meeting on Informatrics in Bombay, 19-22 Dec 94
  8. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.01
    0.01212275 = product of:
      0.03636825 = sum of:
        0.015457222 = weight(_text_:in in 1291) [ClassicSimilarity], result of:
          0.015457222 = score(doc=1291,freq=24.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.260307 = fieldWeight in 1291, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.02091103 = product of:
          0.04182206 = sum of:
            0.04182206 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.04182206 = score(doc=1291,freq=4.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  9. Raan, A.F.J. van: Statistical properties of bibliometric indicators : research group indicator distributions and correlations (2006) 0.01
    0.011934105 = product of:
      0.035802316 = sum of:
        0.010709076 = weight(_text_:in in 5275) [ClassicSimilarity], result of:
          0.010709076 = score(doc=5275,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 5275, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5275)
        0.025093239 = product of:
          0.050186478 = sum of:
            0.050186478 = weight(_text_:22 in 5275) [ClassicSimilarity], result of:
              0.050186478 = score(doc=5275,freq=4.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.32829654 = fieldWeight in 5275, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5275)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this article we present an empirical approach to the study of the statistical properties of bibliometric indicators on a very relevant but not simply available aggregation level: the research group. We focus on the distribution functions of a coherent set of indicators that are used frequently in the analysis of research performance. In this sense, the coherent set of indicators acts as a measuring instrument. Better insight into the statistical properties of a measuring instrument is necessary to enable assessment of the instrument itself. The most basic distribution in bibliometric analysis is the distribution of citations over publications, and this distribution is very skewed. Nevertheless, we clearly observe the working of the central limit theorem and find that at the level of research groups the distribution functions of the main indicators, particularly the journal- normalized and the field-normalized indicators, approach normal distributions. The results of our study underline the importance of the idea of group oeuvre, that is, the role of sets of related publications as a unit of analysis.
    Date
    22. 7.2006 16:20:22
  10. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.01
    0.0115587115 = product of:
      0.034676135 = sum of:
        0.016932536 = weight(_text_:in in 4460) [ClassicSimilarity], result of:
          0.016932536 = score(doc=4460,freq=20.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.28515202 = fieldWeight in 4460, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4460)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.035487194 = score(doc=4460,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Aggregated journal-journal citations can be used for mapping the intellectual organization of the sciences in terms of specialties because the latter can be considered as interreading communities. Can the journal-journal citations also be used as early indicators of change by comparing the files for two subsequent years? Probabilistic entropy measures enable us to analyze changes in large datasets at different levels of aggregation and in considerable detail. Compares Journal Citation Reports of the Social Science Citation Index for 1999 with similar data for 1998 and analyzes the differences using these measures. Compares the various indicators with similar developments in the Science Citation Index. Specialty formation seems a more important mechanism in the development of the social sciences than in the natural and life sciences, but the developments in the social sciences are volatile. The use of aggregate statistics based on the Science Citation Index is ill-advised in the case of the social sciences because of structural differences in the underlying dynamics.
    Date
    6.11.2005 19:02:22
  11. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.01
    0.01143246 = product of:
      0.034297377 = sum of:
        0.0133863455 = weight(_text_:in in 2734) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=2734,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 2734, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.02091103 = product of:
          0.04182206 = sum of:
            0.04182206 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.04182206 = score(doc=2734,freq=4.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  12. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.01
    0.01126907 = product of:
      0.03380721 = sum of:
        0.016063616 = weight(_text_:in in 5270) [ClassicSimilarity], result of:
          0.016063616 = score(doc=5270,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.27051896 = fieldWeight in 5270, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.035487194 = score(doc=5270,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The age distribution of a country's scientists is an important element in the study of its research capacity. In this article we investigate the age distribution of Japanese scientists in order to find out whether major events such as World War II had an appreciable effect on its features. Data have been obtained from population censuses taken in Japan from 1970 to 1995. A comparison with the situation in China and the United States has been made. We find that the group of scientific researchers outside academia is dominated by the young: those younger than age 35. The personnel group in higher education, on the other hand, is dominated by the baby boomers: those who were born after World War II. Contrary to the Chinese situation we could not find any influence of major nondemographic events. The only influence we found was the increase in enrollment of university students after World War II caused by the reform of the Japanese university system. Female participation in the scientific and university systems in Japan, though still low, is increasing.
    Date
    22. 7.2006 15:26:24
  13. Chongde, W.; Zhe, W.: Evaluation of the models for Bradford's law (1998) 0.01
    0.011251582 = product of:
      0.033754744 = sum of:
        0.010096614 = weight(_text_:in in 3688) [ClassicSimilarity], result of:
          0.010096614 = score(doc=3688,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.17003182 = fieldWeight in 3688, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=3688)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 3688) [ClassicSimilarity], result of:
              0.04731626 = score(doc=3688,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 3688, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3688)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Conducts a goodness of fit test for 2 models for Bradford's law given by Egghe and Smolkov. Concludes that Smolkov's model is of comparatively higher accuracy. Finally points out the necessity of carrying out statistical tests for comparisons more frequently for the new models of Bradford's law in the development of the law in order to get the best model
    Date
    22. 5.1999 19:12:28
  14. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.01
    0.011251582 = product of:
      0.033754744 = sum of:
        0.010096614 = weight(_text_:in in 1431) [ClassicSimilarity], result of:
          0.010096614 = score(doc=1431,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.17003182 = fieldWeight in 1431, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.04731626 = score(doc=1431,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
  15. Ohly, P.: Dimensions of globality : a bibliometric analysis (2016) 0.01
    0.011251582 = product of:
      0.033754744 = sum of:
        0.010096614 = weight(_text_:in in 4942) [ClassicSimilarity], result of:
          0.010096614 = score(doc=4942,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.17003182 = fieldWeight in 4942, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4942)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 4942) [ClassicSimilarity], result of:
              0.04731626 = score(doc=4942,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 4942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4942)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    20. 1.2019 11:22:31
    Series
    Advances in knowledge organization; vol.15
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
  16. Bonitz, M.; Scharnhorst, A.: National science systems and the Matthew effect for countries (2000) 0.01
    0.01107326 = product of:
      0.033219777 = sum of:
        0.013115887 = weight(_text_:in in 6643) [ClassicSimilarity], result of:
          0.013115887 = score(doc=6643,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 6643, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=6643)
        0.020103889 = weight(_text_:und in 6643) [ClassicSimilarity], result of:
          0.020103889 = score(doc=6643,freq=4.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.20778441 = fieldWeight in 6643, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=6643)
      0.33333334 = coord(2/6)
    
    Abstract
    In this paper we continue our investigation of the micro-structure of the Matthew effect for countries (MEC). After the recent identification of a new type of scientific journal, the Matthew core journal (MCJ), we study the relations of MCJ to other types of core journals - publication, citation, and participation core journals. 144 MCJ out of 2712 SCI-journals in our sample account for half of the MEC. A typology of the MCJ can be established. The exclusive role of the MCJ consists in carrying a high number of Matthew citations due to the competition of many countries for a high impact of their papers. The research fronts in science are "boiling" in the MCJ. The 144 MCJ are sufficient to construct a country rank distribution that reflects world science performance
    Series
    Fortschritte in der Wissensorganisation; Bd.6
    Source
    Globalisierung und Wissensorganisation: Neue Aspekte für Wissen, Wissenschaft und Informationssysteme: Proceedings der 6. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Hamburg, 23.-25.9.1999. Hrsg.: H.P. Ohly, G. Rahmstorf u. A. Sigel
  17. Burrell, Q.L.: Predicting future citation behavior (2003) 0.01
    0.01106493 = product of:
      0.033194788 = sum of:
        0.012493922 = weight(_text_:in in 3837) [ClassicSimilarity], result of:
          0.012493922 = score(doc=3837,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21040362 = fieldWeight in 3837, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3837)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 3837) [ClassicSimilarity], result of:
              0.04140173 = score(doc=3837,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 3837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3837)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this article we further develop the theory for a stochastic model for the citation process in the presence of obsolescence to predict the future citation pattern of individual papers in a collection. More precisely, we investigate the conditional distribution-and its mean- of the number of citations to a paper after time t, given the number of citations it has received up to time t. In an important parametric case it is shown that the expected number of future citations is a linear function of the current number, this being interpretable as an example of a success-breeds-success phenomenon.
    Date
    29. 3.2003 19:22:48
  18. Althouse, B.M.; West, J.D.; Bergstrom, C.T.; Bergstrom, T.: Differences in impact factor across fields and over time (2009) 0.01
    0.01096284 = product of:
      0.03288852 = sum of:
        0.015144923 = weight(_text_:in in 2695) [ClassicSimilarity], result of:
          0.015144923 = score(doc=2695,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.25504774 = fieldWeight in 2695, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2695)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 2695) [ClassicSimilarity], result of:
              0.035487194 = score(doc=2695,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 2695, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2695)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The bibliometric measure impact factor is a leading indicator of journal influence, and impact factors are routinely used in making decisions ranging from selecting journal subscriptions to allocating research funding to deciding tenure cases. Yet journal impact factors have increased gradually over time, and moreover impact factors vary widely across academic disciplines. Here we quantify inflation over time and differences across fields in impact factor scores and determine the sources of these differences. We find that the average number of citations in reference lists has increased gradually, and this is the predominant factor responsible for the inflation of impact factor scores over time. Field-specific variation in the fraction of citations to literature indexed by Thomson Scientific's Journal Citation Reports is the single greatest contributor to differences among the impact factors of journals in different fields. The growth rate of the scientific literature as a whole, and cross-field differences in net size and growth rate of individual fields, have had very little influence on impact factor inflation or on cross-field differences in impact factor.
    Date
    23. 2.2009 18:22:28
  19. Zhang, Y.: ¬The impact of Internet-based electronic resources on formal scholarly communication in the area of library and information science : a citation analysis (1998) 0.01
    0.01090556 = product of:
      0.03271668 = sum of:
        0.011805649 = weight(_text_:in in 2808) [ClassicSimilarity], result of:
          0.011805649 = score(doc=2808,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 2808, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.02091103 = product of:
          0.04182206 = sum of:
            0.04182206 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
              0.04182206 = score(doc=2808,freq=4.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.27358043 = fieldWeight in 2808, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2808)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Internet based electronic resources are growing dramatically but there have been no empirical studies evaluating the impact of e-sources, as a whole, on formal scholarly communication. reports results of an investigation into how much e-sources have been used in formal scholarly communication, using a case study in the area of Library and Information Science (LIS) during the period 1994 to 1996. 4 citation based indicators were used in the study of the impact measurement. Concludes that, compared with the impact of print sources, the impact of e-sources on formal scholarly communication in LIS is small, as measured by e-sources cited, and does not increase significantly by year even though there is observable growth of these impact across the years. It is found that periodical format is related to the rate of citing e-sources, articles are more likely to cite e-sources than are print priodical articles. However, once authors cite electronic resource, there is no significant difference in the number of references per article by periodical format or by year. Suggests that, at this stage, citing e-sources may depend on authors rather than the periodical format in which authors choose to publish
    Date
    30. 1.1999 17:22:22
  20. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.01
    0.010888567 = product of:
      0.0326657 = sum of:
        0.0075724614 = weight(_text_:in in 2763) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2763,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2763, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.025093239 = product of:
          0.050186478 = sum of:
            0.050186478 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.050186478 = score(doc=2763,freq=4.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35

Years

Types