Search (29 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Inhaltsanalyse"
  • × year_i:[2000 TO 2010}
  1. White, M.D.; Marsh, E.E.: Content analysis : a flexible methodology (2006) 0.02
    0.017165082 = product of:
      0.051495243 = sum of:
        0.051495243 = sum of:
          0.015880484 = weight(_text_:of in 5589) [ClassicSimilarity], result of:
            0.015880484 = score(doc=5589,freq=10.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.23179851 = fieldWeight in 5589, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.046875 = fieldNorm(doc=5589)
          0.03561476 = weight(_text_:22 in 5589) [ClassicSimilarity], result of:
            0.03561476 = score(doc=5589,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.23214069 = fieldWeight in 5589, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5589)
      0.33333334 = coord(1/3)
    
    Abstract
    Content analysis is a highly flexible research method that has been widely used in library and information science (LIS) studies with varying research goals and objectives. The research method is applied in qualitative, quantitative, and sometimes mixed modes of research frameworks and employs a wide range of analytical techniques to generate findings and put them into context. This article characterizes content analysis as a systematic, rigorous approach to analyzing documents obtained or generated in the course of research. It briefly describes the steps involved in content analysis, differentiates between quantitative and qualitative content analysis, and shows that content analysis serves the purposes of both quantitative research and qualitative research. The authors draw on selected LIS studies that have used content analysis to illustrate the concepts addressed in the article. The article also serves as a gateway to methodological books and articles that provide more detail about aspects of content analysis discussed only briefly in the article.
    Source
    Library trends. 55(2006) no.1, S.22-45
  2. Sauperl, A.: Subject determination during the cataloging process : the development of a system based on theoretical principles (2002) 0.01
    0.012310005 = product of:
      0.036930013 = sum of:
        0.036930013 = sum of:
          0.019122634 = weight(_text_:of in 2293) [ClassicSimilarity], result of:
            0.019122634 = score(doc=2293,freq=58.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.27912235 = fieldWeight in 2293, product of:
                7.615773 = tf(freq=58.0), with freq of:
                  58.0 = termFreq=58.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0234375 = fieldNorm(doc=2293)
          0.01780738 = weight(_text_:22 in 2293) [ClassicSimilarity], result of:
            0.01780738 = score(doc=2293,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.116070345 = fieldWeight in 2293, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=2293)
      0.33333334 = coord(1/3)
    
    Date
    27. 9.2005 14:22:19
    Footnote
    Rez. in: Knowledge organization 30(2003) no.2, S.114-115 (M. Hudon); "This most interesting contribution to the literature of subject cataloguing originates in the author's doctoral dissertation, prepared under the direction of jerry Saye at the University of North Carolina at Chapel Hill. In seven highly readable chapters, Alenka Sauperl develops possible answers to her principal research question: How do cataloguers determine or identify the topic of a document and choose appropriate subject representations? Specific questions at the source of this research an a process which has not been a frequent object of study include: Where do cataloguers look for an overall sense of what a document is about? How do they get an overall sense of what a document is about, especially when they are not familiar with the discipline? Do they consider only one or several possible interpretations? How do they translate meanings in appropriate and valid class numbers and subject headings? Using a strictly qualitative methodology, Dr. Sauperl's research is a study of twelve cataloguers in reallife situation. The author insists an the holistic rather than purely theoretical understanding of the process she is targeting. Participants in the study were professional cataloguers, with at least one year experience in their current job at one of three large academic libraries in the Southeastern United States. All three libraries have a large central cataloguing department, and use OCLC sources and the same automated system; the context of cataloguing tasks is thus considered to be reasonably comparable. All participants were volunteers in this study which combined two datagathering techniques: the think-aloud method and time-line interviews. A model of the subject cataloguing process was first developed from observations of a group of six cataloguers who were asked to independently perform original cataloguing an three nonfiction, non-serial items selected from materials regularly assigned to them for processing. The model was then used for follow-up interviews. Each participant in the second group of cataloguers was invited to reflect an his/her work process for a recent challenging document they had catalogued. Results are presented in 12 stories describing as many personal approaches to subject cataloguing. From these stories a summarization is offered and a theoretical model of subject cataloguing is developed which, according to the author, represents a realistic approach to subject cataloguing. Stories alternate comments from the researcher and direct quotations from the observed or interviewed cataloguers. Not surprisingly, the participants' stories reveal similarities in the sequence and accomplishment of several tasks in the process of subject cataloguing. Sauperl's proposed model, described in Chapter 5, includes as main stages: 1) Examination of the book and subject identification; 2) Search for subject headings; 3) Classification. Chapter 6 is a hypothetical Gase study, using the proposed model to describe the various stages of cataloguing a hypothetical resource. ...
    This document will be particularly useful to subject cataloguing teachers and trainers who could use the model to design case descriptions and exercises. We believe it is an accurate description of the reality of subject cataloguing today. But now that we know how things are dope, the next interesting question may be: Is that the best way? Is there a better, more efficient, way to do things? We can only hope that Dr. Sauperl will soon provide her own view of methods and techniques that could improve the flow of work or address the cataloguers' concern as to the lack of feedback an their work. Her several excellent suggestions for further research in this area all build an bits and pieces of what is done already, and stay well away from what could be done by the various actors in the area, from the designers of controlled vocabularies and authority files to those who use these tools an a daily basis to index, classify, or search for information."
  3. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.01
    0.009537029 = product of:
      0.028611086 = sum of:
        0.028611086 = sum of:
          0.016739499 = weight(_text_:of in 1858) [ClassicSimilarity], result of:
            0.016739499 = score(doc=1858,freq=100.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.24433708 = fieldWeight in 1858, product of:
                10.0 = tf(freq=100.0), with freq of:
                  100.0 = termFreq=100.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.015625 = fieldNorm(doc=1858)
          0.011871587 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
            0.011871587 = score(doc=1858,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.07738023 = fieldWeight in 1858, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1858)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Rez. in JASIST 54(2003) no.4, S.356-357 (S.J. Lincicum): "Reliance upon shared cataloging in academic libraries in the United States has been driven largely by the need to reduce the expense of cataloging operations without muck regard for the Impact that this approach might have an the quality of the records included in local catalogs. In recent years, ever increasing pressures have prompted libraries to adopt practices such as "rapid" copy cataloging that purposely reduce the scrutiny applied to bibliographic records downloaded from shared databases, possibly increasing the number of errors that slip through unnoticed. Errors in bibliographic records can lead to serious problems for library catalog users. If the data contained in bibliographic records is inaccurate, users will have difficulty discovering and recognizing resources in a library's collection that are relevant to their needs. Thus, it has become increasingly important to understand the extent and nature of errors that occur in the records found in large shared bibliographic databases, such as OCLC WorldCat, to develop cataloging practices optimized for the shared cataloging environment. Although this monograph raises a few legitimate concerns about recent trends in cataloging practice, it fails to provide the "detailed look" at misinformation in library catalogs arising from linguistic errors and mistakes in subject analysis promised by the publisher. A basic premise advanced throughout the text is that a certain amount of linguistic and subject knowledge is required to catalog library materials effectively. The author emphasizes repeatedly that most catalogers today are asked to catalog an increasingly diverse array of materials, and that they are often required to work in languages or subject areas of which they have little or no knowledge. He argues that the records contributed to shared databases are increasingly being created by catalogers with inadequate linguistic or subject expertise. This adversely affects the quality of individual library catalogs because errors often go uncorrected as records are downloaded from shared databases to local catalogs by copy catalogers who possess even less knowledge. Calling misinformation an "evil phenomenon," Bade states that his main goal is to discuss, "two fundamental types of misinformation found in bibliographic and authority records in library catalogs: that arising from linguistic errors, and that caused by errors in subject analysis, including missing or wrong subject headings" (p. 2). After a superficial discussion of "other" types of errors that can occur in bibliographic records, such as typographical errors and errors in the application of descriptive cataloging rules, Bade begins his discussion of linguistic errors. He asserts that sharing bibliographic records created by catalogers with inadequate linguistic or subject knowledge has, "disastrous effects an the library community" (p. 6). To support this bold assertion, Bade provides as evidence little more than a laundry list of errors that he has personally observed in bibliographic records over the years. When he eventually cites several studies that have addressed the availability and quality of records available for materials in languages other than English, he fails to describe the findings of these studies in any detail, let alone relate the findings to his own observations in a meaningful way. Bade claims that a lack of linguistic expertise among catalogers is the "primary source for linguistic misinformation in our databases" (p. 10), but he neither cites substantive data from existing studies nor provides any new data regarding the overall level of linguistic knowledge among catalogers to support this claim. The section concludes with a brief list of eight sensible, if unoriginal, suggestions for coping with the challenge of cataloging materials in unfamiliar languages.
    Bade begins his discussion of errors in subject analysis by summarizing the contents of seven records containing what he considers to be egregious errors. The examples were drawn only from items that he has encountered in the course of his work. Five of the seven records were full-level ("I" level) records for Eastern European materials created between 1996 and 2000 in the OCLC WorldCat database. The final two examples were taken from records created by Bade himself over an unspecified period of time. Although he is to be commended for examining the actual items cataloged and for examining mostly items that he claims to have adequate linguistic and subject expertise to evaluate reliably, Bade's methodology has major flaws. First and foremost, the number of examples provided is completely inadequate to draw any conclusions about the extent of the problem. Although an in-depth qualitative analysis of a small number of records might have yielded some valuable insight into factors that contribute to errors in subject analysis, Bade provides no Information about the circumstances under which the live OCLC records he critiques were created. Instead, he offers simplistic explanations for the errors based solely an his own assumptions. He supplements his analysis of examples with an extremely brief survey of other studies regarding errors in subject analysis, which consists primarily of criticism of work done by Sheila Intner. In the end, it is impossible to draw any reliable conclusions about the nature or extent of errors in subject analysis found in records in shared bibliographic databases based an Bade's analysis. In the final third of the essay, Bade finally reveals his true concern: the deintellectualization of cataloging. It would strengthen the essay tremendously to present this as the primary premise from the very beginning, as this section offers glimpses of a compelling argument. Bade laments, "Many librarians simply do not sec cataloging as an intellectual activity requiring an educated mind" (p. 20). Commenting an recent trends in copy cataloging practice, he declares, "The disaster of our time is that this work is being done more and more by people who can neither evaluate nor correct imported errors and offen are forbidden from even thinking about it" (p. 26). Bade argues that the most valuable content found in catalog records is the intellectual content contributed by knowledgeable catalogers, and he asserts that to perform intellectually demanding tasks such as subject analysis reliably and effectively, catalogers must have the linguistic and subject knowledge required to gain at least a rudimentary understanding of the materials that they describe. He contends that requiring catalogers to quickly dispense with materials in unfamiliar languages and subjects clearly undermines their ability to perform the intellectual work of cataloging and leads to an increasing number of errors in the bibliographic records contributed to shared databases.
    Arguing that catalogers need to work both quickly and accurately, Bade maintains that employing specialists is the most efficient and effective way to achieve this outcome. Far less compelling than these arguments are Bade's concluding remarks, in which he offers meager suggestions for correcting the problems as he sees them. Overall, this essay is little more than a curmudgeon's diatribe. Addressed primarily to catalogers and library administrators, the analysis presented is too superficial to assist practicing catalogers or cataloging managers in developing solutions to any systemic problems in current cataloging practice, and it presents too little evidence of pervasive problems to convince budget-conscious library administrators of a need to alter practice or to increase their investment in local cataloging operations. Indeed, the reliance upon anecdotal evidence and the apparent nit-picking that dominate the essay might tend to reinforce a negative image of catalogers in the minds of some. To his credit, Bade does provide an important reminder that it is the intellectual contributions made by thousands of erudite catalogers that have made shared cataloging a successful strategy for improving cataloging efficiency. This is an important point that often seems to be forgotten in academic libraries when focus centers an cutting costs. Had Bade focused more narrowly upon the issue of deintellectualization of cataloging and written a carefully structured essay to advance this argument, this essay might have been much more effective." - KO 29(2002) nos.3/4, S.236-237 (A. Sauperl)
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
  4. Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images : a comparison using basic level theory (2008) 0.00
    0.0044112457 = product of:
      0.013233736 = sum of:
        0.013233736 = product of:
          0.026467472 = sum of:
            0.026467472 = weight(_text_:of in 2122) [ClassicSimilarity], result of:
              0.026467472 = score(doc=2122,freq=40.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38633084 = fieldWeight in 2122, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2122)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Although images are visual information sources with little or no text associated with them, users still tend to use text to describe images and formulate queries. This is because digital libraries and search engines provide mostly text query options and rely on text annotations for representation and retrieval of the semantic content of images. While the main focus of image research is on indexing and retrieval of individual images, the general topic of image browsing and indexing, and retrieval of groups of images has not been adequately investigated. Comparisons of descriptions of individual images as well as labels of groups of images supplied by users using cognitive models are scarce. This work fills this gap. Using the basic level theory as a framework, a comparison of the descriptions of individual images and labels assigned to groups of images by 180 participants in three studies found a marked difference in their level of abstraction. Results confirm assertions by previous researchers in LIS and other fields that groups of images are labeled using more superordinate level terms while individual image descriptions are mainly at the basic level. Implications for design of image browsing interfaces, taxonomies, thesauri, and similar tools are discussed.
  5. Hjoerland, B.: Towards a theory of aboutness, subject, topicality, theme, domain, field, content ... and relevance (2001) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 6032) [ClassicSimilarity], result of:
              0.024856888 = score(doc=6032,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 6032, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6032)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Theories of aboutness and theories of subject analysis and of related concepts such as topicality are often isolated from each other in the literature of information science (IS) and related disciplines. In IS it is important to consider the nature and meaning of these concepts, which is closely related to theoretical and metatheoretical issues in information retrieval (IR). A theory of IR must specify which concepts should be regarded as synonymous concepts and explain how the meaning of the nonsynonymous concepts should be defined
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.9, S.774-778
  6. Zarri, G.P.: Indexing and querying of narrative documents, a knowledge representation approach (2003) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 2691) [ClassicSimilarity], result of:
              0.024856888 = score(doc=2691,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 2691, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2691)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We describe here NKRL (Narrative Knowledge Representation Language), a semantic formalism for taking into account the characteristics of narrative multimedia documents. In these documents, the information content consists in the description of 'events' that relate the real or intended behaviour of some 'actors' (characters, personages, etc.). Narrative documents of an economic interest correspond to news stories, corporate documents, normative and legal texts, intelligence messages, representation of patient's medical records, etc. NKRL is characterised by the use of several knowledge representation principles and several high-level inference tools.
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  7. Rorissa, A.; Iyer, H.: Theories of cognition and image categorization : what category labels reveal about basic level theory (2008) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 1958) [ClassicSimilarity], result of:
              0.02460194 = score(doc=1958,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 1958, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1958)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Information search and retrieval interactions usually involve information content in the form of document collections, information retrieval systems and interfaces, and the user. To fully understand information search and retrieval interactions between users' cognitive space and the information space, researchers need to turn to cognitive models and theories. In this article, the authors use one of these theories, the basic level theory. Use of the basic level theory to understand human categorization is both appropriate and essential to user-centered design of taxonomies, ontologies, browsing interfaces, and other indexing tools and systems. Analyses of data from two studies involving free sorting by 105 participants of 100 images were conducted. The types of categories formed and category labels were examined. Results of the analyses indicate that image category labels generally belong to superordinate to the basic level, and are generic and interpretive. Implications for research on theories of cognition and categorization, and design of image indexing, retrieval and browsing systems are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.9, S.1383-1392
  8. Mai, J.-E.: Semiotics and indexing : an analysis of the subject indexing process (2001) 0.00
    0.0040669674 = product of:
      0.012200902 = sum of:
        0.012200902 = product of:
          0.024401804 = sum of:
            0.024401804 = weight(_text_:of in 4480) [ClassicSimilarity], result of:
              0.024401804 = score(doc=4480,freq=34.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.35617945 = fieldWeight in 4480, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4480)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper explains at least some of the major problems related to the subject indexing process and proposes a new approach to understanding the process, which is ordinarily described as a process that takes a number of steps. The subject is first determined, then it is described in a few sentences and, lastly, the description of the subject is converted into the indexing language. It is argued that this typical approach characteristically lacks an understanding of what the central nature of the process is. Indexing is not a neutral and objective representation of a document's subject matter but the representation of an interpretation of a document for future use. Semiotics is offered here as a framework for understanding the "interpretative" nature of the subject indexing process. By placing this process within Peirce's semiotic framework of ideas and terminology, a more detailed description of the process is offered which shows that the uncertainty generally associated with this process is created by the fact that the indexer goes through a number of steps and creates the subject matter of the document during this process. The creation of the subject matter is based on the indexer's social and cultural context. The paper offers an explanation of what occurs in the indexing process and suggests that there is only little certainty to its result.
    Source
    Journal of documentation. 57(2001) no.5, S.591-622
  9. Inskip, C.; MacFarlane, A.; Rafferty, P.: Meaning, communication, music : towards a revised communication model (2008) 0.00
    0.0040669674 = product of:
      0.012200902 = sum of:
        0.012200902 = product of:
          0.024401804 = sum of:
            0.024401804 = weight(_text_:of in 2347) [ClassicSimilarity], result of:
              0.024401804 = score(doc=2347,freq=34.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.35617945 = fieldWeight in 2347, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2347)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - If an information retrieval system is going to be of value to the user then it must give meaning to the information which matches the meaning given to it by the user. The meaning given to music varies according to who is interpreting it - the author/composer, the performer, cataloguer or the listener - and this affects how music is organized and retrieved. This paper aims to examine the meaning of music, how meaning is communicated and suggests this may affect music retrieval. Design/methodology/approach - Musicology is used to define music and examine its functions leading to a discussion of how music has been organised and described. Various ways of establishing the meaning of music are reviewed, focussing on established musical analysis techniques. It is suggested that traditional methods are of limited use with digitised popular music. A discussion of semiotics and a review of semiotic analysis in western art music leads to a discussion of semiotics of popular music and examines ideas of Middleton, Stefani and Tagg. Findings - Agreeing that music exists when communication takes place, a discussion of selected communication models leads to the proposal of a revised version of Tagg's model, adjusting it to include listener feedback. Originality/value - The outcome of the analysis is a revised version of Tagg's communication model, adapted to reflect user feedback. It is suggested that this revised communication model reflects the way in which meaning is given to music.
    Source
    Journal of documentation. 64(2008) no.5, S.687-706
  10. Andersen, J.; Christensen, F.S.: Wittgenstein and indexing theory (2001) 0.00
    0.003945538 = product of:
      0.0118366135 = sum of:
        0.0118366135 = product of:
          0.023673227 = sum of:
            0.023673227 = weight(_text_:of in 1590) [ClassicSimilarity], result of:
              0.023673227 = score(doc=1590,freq=32.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34554482 = fieldWeight in 1590, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1590)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper considers indexing an activity that deals with linguistic entities. It rests an the assumption that a theory of indexing should be based an a philosophy of language, because indexing is concerned with the linguistic representation of meaning. The paper consists of four sections: It begins with some basic considerations an the nature of indexing and the requirements for a theory an this; it is followed by a short review of the use of Wittgenstein's philosophy in LIS-literature; next is an analysis of Wittgenstein's work Philosophical Investigations; finally, we deduce a theory of indexing from this philosophy. Considering an indexing theory a theory of meaning entails that, for the purpose of retrieval, indexing is a representation of meaning. Therefore, an indexing theory is concerned with how words are used in the linguistic context. Furthermore, the indexing process is a communicative process containing an interpretative element. Through the philosophy of the later Wittgenstein, it is shown that language and meaning are publicly constituted entities. Since they form the basis of indexing, a theory hereof must take into account that no single actor can define the meaning of documents. Rather this is decided by the social, historical and linguistic context in which the document is produced, distributed and exchanged. Indexing must clarify and reflect these contexts.
    Source
    Advances in classification research, vol.10: proceedings of the 10th ASIS SIG/CR Classification Research Workshop. Ed.: Albrechtsen, H. u. J.E. Mai
  11. Allen, R.B.; Wu, Y.: Metrics for the scope of a collection (2005) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 4570) [ClassicSimilarity], result of:
              0.023554565 = score(doc=4570,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 4570, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4570)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Some collections cover many topics, while others are narrowly focused an a limited number of topics. We introduce the concept of the "scope" of a collection of documents and we compare two ways of measuring lt. These measures are based an the distances between documents. The first uses the overlap of words between pairs of documents. The second measure uses a novel method that calculates the semantic relatedness to pairs of words from the documents. Those values are combined to obtain an overall distance between the documents. The main validation for the measures compared Web pages categorized by Yahoo. Sets of pages sampied from broad categories were determined to have a higher scope than sets derived from subcategories. The measure was significant and confirmed the expected difference in scope. Finally, we discuss other measures related to scope.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.12, S.1243-1249
  12. Enser, P.G.B.; Sandom, C.J.; Hare, J.S.; Lewis, P.H.: Facing the reality of semantic image retrieval (2007) 0.00
    0.0038202507 = product of:
      0.011460752 = sum of:
        0.011460752 = product of:
          0.022921504 = sum of:
            0.022921504 = weight(_text_:of in 837) [ClassicSimilarity], result of:
              0.022921504 = score(doc=837,freq=30.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33457235 = fieldWeight in 837, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=837)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - To provide a better-informed view of the extent of the semantic gap in image retrieval, and the limited potential for bridging it offered by current semantic image retrieval techniques. Design/methodology/approach - Within an ongoing project, a broad spectrum of operational image retrieval activity has been surveyed, and, from a number of collaborating institutions, a test collection assembled which comprises user requests, the images selected in response to those requests, and their associated metadata. This has provided the evidence base upon which to make informed observations on the efficacy of cutting-edge automatic annotation techniques which seek to integrate the text-based and content-based image retrieval paradigms. Findings - Evidence from the real-world practice of image retrieval highlights the existence of a generic-specific continuum of object identification, and the incidence of temporal, spatial, significance and abstract concept facets, manifest in textual indexing and real-query scenarios but often having no directly visible presence in an image. These factors combine to limit the functionality of current semantic image retrieval techniques, which interpret only visible features at the generic extremity of the generic-specific continuum. Research limitations/implications - The project is concerned with the traditional image retrieval environment in which retrieval transactions are conducted on still images which form part of managed collections. The possibilities offered by ontological support for adding functionality to automatic annotation techniques are considered. Originality/value - The paper offers fresh insights into the challenge of migrating content-based image retrieval from the laboratory to the operational environment, informed by newly-assembled, comprehensive, live data.
    Source
    Journal of documentation. 63(2007) no.4, S.465-481
  13. Marsh, E.E.; White, M.D.: ¬A taxonomy of relationships between images and text (2003) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 4444) [ClassicSimilarity], result of:
              0.022458395 = score(doc=4444,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 4444, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4444)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper establishes a taxonomy of image-text relationships that reflects the ways that images and text interact. It is applicable to all subject areas and document types. The taxonomy was developed to answer the research question: how does an illustration relate to the text with which it is associated, or, what are the functions of illustration? Developed in a two-stage process - first, analysis of relevant research in children's literature, dictionary development, education, journalism, and library and information design and, second, subsequent application of the first version of the taxonomy to 954 image-text pairs in 45 Web pages (pages with educational content for children, online newspapers, and retail business pages) - the taxonomy identifies 49 relationships and groups them in three categories according to the closeness of the conceptual relationship between image and text. The paper uses qualitative content analysis to illustrate use of the taxonomy to analyze four image-text pairs in government publications and discusses the implications of the research for information retrieval and document design.
    Source
    Journal of documentation. 59(2003) no.6, S.647-672
  14. Rosso, M.A.: User-based identification of Web genres (2008) 0.00
    0.0036907129 = product of:
      0.011072138 = sum of:
        0.011072138 = product of:
          0.022144277 = sum of:
            0.022144277 = weight(_text_:of in 1863) [ClassicSimilarity], result of:
              0.022144277 = score(doc=1863,freq=28.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32322758 = fieldWeight in 1863, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1863)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This research explores the use of genre as a document descriptor in order to improve the effectiveness of Web searching. A major issue to be resolved is the identification of what document categories should be used as genres. As genre is a kind of folk typology, document categories must enjoy widespread recognition by their intended user groups in order to qualify as genres. Three user studies were conducted to develop a genre palette and show that it is recognizable to users. (Palette is a term used to denote a classification, attributable to Karlgren, Bretan, Dewe, Hallberg, and Wolkert, 1998.) To simplify the users' classification task, it was decided to focus on Web pages from the edu domain. The first study was a survey of user terminology for Web pages. Three participants separated 100 Web page printouts into stacks according to genre, assigning names and definitions to each genre. The second study aimed to refine the resulting set of 48 (often conceptually and lexically similar) genre names and definitions into a smaller palette of user-preferred terminology. Ten participants classified the same 100 Web pages. A set of five principles for creating a genre palette from individuals' sortings was developed, and the list of 48 was trimmed to 18 genres. The third study aimed to show that users would agree on the genres of Web pages when choosing from the genre palette. In an online experiment in which 257 participants categorized a new set of 55 pages using the 18 genres, on average, over 70% agreed on the genre of each page. Suggestions for improving the genre palette and future directions for the work are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.7, S.1053-1072
  15. Sauperl, A.: Subject cataloging process of Slovenian and American catalogers (2005) 0.00
    0.00355646 = product of:
      0.0106693795 = sum of:
        0.0106693795 = product of:
          0.021338759 = sum of:
            0.021338759 = weight(_text_:of in 4702) [ClassicSimilarity], result of:
              0.021338759 = score(doc=4702,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.31146988 = fieldWeight in 4702, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4702)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - An empirical study has shown that the real process of subject cataloging does not correspond entirely to theoretical descriptions in textbooks and international standards. The purpose of this is paper is to address the issue of whether it be possible for catalogers who have not received formal training to perform subject cataloging in a different way to their trained colleagues. Design/methodology/approach - A qualitative study was conducted in 2001 among five Slovenian public library catalogers. The resulting model is compared to previous findings. Findings - First, all catalogers attempted to determine what the book was about. While the American catalogers tried to understand the topic and the author's intent, the Slovenian catalogers appeared to focus on the topic only. Slovenian and American academic library catalogers did not demonstrate any anticipation of possible uses that users might have of the book, while this was important for American public library catalogers. All catalogers used existing records to build new ones and/or to search for subject headings. The verification of subject representation with the indexing language was the last step in the subject cataloging process of American catalogers, often skipped by Slovenian catalogers. Research limitations/implications - The small and convenient sample limits the findings. Practical implications - Comparison of subject cataloging processes of Slovenian and American catalogers, two different groups, is important because they both contribute to OCLC's WorldCat database. If the cataloging community is building a universal catalog and approaches to subject description are different, then the resulting subject representations might also be different. Originality/value - This is one of the very few empirical studies of subject cataloging and indexing.
    Source
    Journal of documentation. 61(2005) no.6, S.713-734
  16. Sauperl, A.: Catalogers' common ground and shared knowledge (2004) 0.00
    0.0034169364 = product of:
      0.010250809 = sum of:
        0.010250809 = product of:
          0.020501617 = sum of:
            0.020501617 = weight(_text_:of in 2069) [ClassicSimilarity], result of:
              0.020501617 = score(doc=2069,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2992506 = fieldWeight in 2069, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2069)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The problem of multiple interpretations of meaning in the indexing process has been mostly avoided by information scientists. Among the few who have addressed this question are Clare Beghtol and Jens Erik Mai. Their findings and findings of other researchers in the area of information science, social psychology, and psycholinguistics indicate that the source of the problem might lie in the background and culture of each indexer or cataloger. Are the catalogers aware of the problem? A general model of the indexing process was developed from observations and interviews of 12 catalogers in three American academic libraries. The model is illustrated with a hypothetical cataloger's process. The study with catalogers revealed that catalogers are aware of the author's, the user's, and their own meaning, but do not try to accommodate them all. On the other hand, they make every effort to build common ground with catalog users by studying documents related to the document being cataloged, and by considering catalog records and subject headings related to the subject identified in the document being cataloged. They try to build common ground with other catalogers by using cataloging tools and by inferring unstated rules of cataloging from examples in the catalogs.
    Source
    Journal of the American Society for Information Science and technology. 55(2004) no.1, S.55-63
  17. Winget, M.: Describing art : an alternative approach to subject access and interpretation (2009) 0.00
    0.0034169364 = product of:
      0.010250809 = sum of:
        0.010250809 = product of:
          0.020501617 = sum of:
            0.020501617 = weight(_text_:of in 3618) [ClassicSimilarity], result of:
              0.020501617 = score(doc=3618,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2992506 = fieldWeight in 3618, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3618)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to examine the art historical antecedents of providing subject access to images. After reviewing the assumptions and limitations inherent in the most prevalent descriptive method, the paper seeks to introduce a new model that allows for more comprehensive representation of visually-based cultural materials. Design/methodology/approach - The paper presents a literature-based conceptual analysis, taking Panofsky's theory of iconography and iconology as the starting-point. Panofsky's conceptual model, while appropriate for art created in the Western academic tradition, ignores or misrepresents work from other eras or cultures. Continued dependence on Panofskian descriptive methods limits the functionality and usefulness of image representation systems. Findings - The paper recommends the development of a more precise and inclusive descriptive model for art objects, which is based on the premise that art is not another sort of text, and should not be interpreted as such. Practical implications - The paper provides suggestions for the development of representation models that will enhance the description of non-textual artifacts. Originality/value - The paper addresses issues in information science, the history of art, and computer science, and suggests that a new descriptive model would be of great value to both humanist and social science scholars.
    Source
    Journal of documentation. 65(2009) no.6, S.958-976
  18. Buckland, M.; Shaw, R.: 4W vocabulary mapping across diiverse reference genres (2008) 0.00
    0.0033478998 = product of:
      0.010043699 = sum of:
        0.010043699 = product of:
          0.020087399 = sum of:
            0.020087399 = weight(_text_:of in 2258) [ClassicSimilarity], result of:
              0.020087399 = score(doc=2258,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2932045 = fieldWeight in 2258, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2258)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    This paper examines three themes in the design of search support services: linking different genres of reference resources (e.g. bibliographies, biographical dictionaries, catalogs, encyclopedias, place name gazetteers); the division of vocabularies by facet (e.g. What, Where, When, and Who); and mapping between both similar and dissimilar vocabularies. Different vocabularies within a facet can be used in conjunction, e.g. a place name combined with spatial coordinates for Where. In practice, vocabularies of different facets are used in combination in the representation or description of complex topics. Rich opportunities arise from mapping across vocabularies of dissimilar reference genres to recreate the amenities of a reference library. In a network environment, in which vocabulary control cannot be imposed, semantic correspondence across diverse vocabularies is a challenge and an opportunity.
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  19. Andersen, J.: ¬The concept of genre : when, how, and why? (2001) 0.00
    0.0031564306 = product of:
      0.009469291 = sum of:
        0.009469291 = product of:
          0.018938582 = sum of:
            0.018938582 = weight(_text_:of in 639) [ClassicSimilarity], result of:
              0.018938582 = score(doc=639,freq=8.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27643585 = fieldWeight in 639, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=639)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    As the title of the conference indicates, the concept of genre was at stake
    Footnote
    Bericht von einer Tagung "Genre 2001. Genres and Discourses in Education, Work and Cultural Life: Encounters of Academic Disciplines on Theories and Practices", May 13th to 16th, 2001, Oslo University College, Olso, Norway
  20. Greisdorf, H.; O'Connor, B.: Modelling what users see when they look at images : a cognitive viewpoint (2002) 0.00
    0.0031316737 = product of:
      0.009395021 = sum of:
        0.009395021 = product of:
          0.018790042 = sum of:
            0.018790042 = weight(_text_:of in 4471) [ClassicSimilarity], result of:
              0.018790042 = score(doc=4471,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2742677 = fieldWeight in 4471, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4471)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Analysis of user viewing and query-matching behavior furnishes additional evidence that the relevance of retrieved images for system users may arise from descriptions of objects and content-based elements that are not evident or not even present in the image. This investigation looks at how users assign pre-determined query terms to retrieved images, as well as looking at a post-retrieval process of image engagement to user cognitive assessments of meaningful terms. Additionally, affective/emotion-based query terms appear to be an important descriptive category for image retrieval. A system for capturing (eliciting) human interpretations derived from cognitive engagements with viewed images could further enhance the efficiency of image retrieval systems stemming from traditional indexing methods and technology-based content extraction algorithms. An approach to such a system is posited.
    Source
    Journal of documentation. 58(2002) no.1, S.6-29