Search (10 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × theme_ss:"Metadaten"
  1. Kent, R.E.: Organizing conceptual knowledge online : metadata interoperability and faceted classification (1998) 0.01
    0.0070223557 = product of:
      0.049156487 = sum of:
        0.041200902 = weight(_text_:representation in 57) [ClassicSimilarity], result of:
          0.041200902 = score(doc=57,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=57)
        0.007955586 = product of:
          0.023866756 = sum of:
            0.023866756 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.023866756 = score(doc=57,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.2708308 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=57)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Conceptual Knowledge Markup Language (CKML), an application of XML, is a new standard being promoted for the specification of online conceptual knowledge (Kent and Shrivastava, 1998). CKML follows the philosophy of Conceptual Knowledge Processing (Wille, 1982), a principled approach to knowledge representation and data analysis, which advocates the development of methodologies and techniques to support people in their rational thinking, judgement and actions. CKML was developed and is being used in the WAVE networked information discovery and retrieval system (Kent and Neuss, 1994) as a standard for the specification of conceptual knowledge
    Date
    30.12.2001 16:22:41
  2. Aldana, J.F.; Gómez, A.C.; Moreno, N.; Nebro, A.J.; Roldán, M.M.: Metadata functionality for semantic Web integration (2003) 0.00
    0.0029127372 = product of:
      0.04077832 = sum of:
        0.04077832 = weight(_text_:representation in 2731) [ClassicSimilarity], result of:
          0.04077832 = score(doc=2731,freq=6.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35219026 = fieldWeight in 2731, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=2731)
      0.071428575 = coord(1/14)
    
    Abstract
    We propose an extension of a mediator architecture. This extension is oriented to ontology-driven data integration. In our architecture ontologies are not managed by an extemal component or service, but are integrated in the mediation layer. This approach implies rethinking the mediator design, but at the same time provides advantages from a database perspective. Some of these advantages include the application of optimization and evaluation techniques that use and combine information from all abstraction levels (physical schema, logical schema and semantic information defined by ontology). 1. Introduction Although the Web is probably the richest information repository in human history, users cannot specify what they want from it. Two major problems that arise in current search engines (Heflin, 2001) are: a) polysemy, when the same word is used with different meanings; b) synonymy, when two different words have the same meaning. Polysemy causes irrelevant information retrieval. On the other hand, synonymy produces lost of useful documents. The lack of a capability to understand the context of the words and the relationships among required terms, explains many of the lost and false results produced by search engines. The Semantic Web will bring structure to the meaningful content of Web pages, giving semantic relationships among terms and possibly avoiding the previous problems. Various proposals have appeared for meta-data representation and communication standards, and other services and tools that may eventually merge into the global Semantic Web (Berners-lee, 2001). Hopefully, in the next few years we will see the universal adoption of open standards for representation and sharing of meta-information. In this environment, software agents roaming from page to page can readily carry out sophisticated tasks for users (Berners-Lee, 2001). In this context, ontologies can be seen as metadata that represent semantic of data; providing a knowledge domain standard vocabulary, like DTDs and XML Schema do. If its pages were so structured, the Web could be seen as a heterogeneous collection of autonomous databases. This suggests that techniques developed in the Database area could be useful. Database research mainly deals with efficient storage and retrieval and with powerful query languages.
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  3. Qin, J.; Wesley, K.: Web indexing with meta fields : a survey of Web objects in polymer chemistry (1998) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 3589) [ClassicSimilarity], result of:
          0.03531506 = score(doc=3589,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 3589, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=3589)
      0.071428575 = coord(1/14)
    
    Abstract
    Reports results of a study of 4 WWW search engines: AltaVista; Lycos; Excite and WebCrawler to collect data on Web objects on polymer chemistry. 1.037 Web objects were examined for data in 4 categories: document information; use of meta fields; use of images and use of chemical names. Issues raised included: whether to provide metadata elements for parts of entities or whole entities only, the use of metasyntax, problems in representation of special types of objects, and whether links should be considered when encoding metadata. Use of metafields was not widespread in the sample and knowledge of metafields in HTML varied greatly among Web object creators. The study formed part of a metadata project funded by the OCLC Library and Information Science Research Grant Program
  4. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.00
    0.002283341 = product of:
      0.031966772 = sum of:
        0.031966772 = product of:
          0.047950156 = sum of:
            0.024083402 = weight(_text_:29 in 2673) [ClassicSimilarity], result of:
              0.024083402 = score(doc=2673,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.27205724 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
            0.023866756 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.023866756 = score(doc=2673,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Date
    1. 8.1996 22:08:06
    Source
    Computer networks and ISDN systems. 29(1997) no.8, S.1147-1156
  5. Crowston, K.; Kwasnik, B.H.: Can document-genre metadata improve information access to large digital collections? (2004) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 824) [ClassicSimilarity], result of:
          0.02942922 = score(doc=824,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=824)
      0.071428575 = coord(1/14)
    
    Abstract
    We discuss the issues of resolving the information-retrieval problem in large digital collections through the identification and use of document genres. Explicit identification of genre seems particularly important for such collections because any search usually retrieves documents with a diversity of genres that are undifferentiated by obvious clues as to their identity. Also, because most genres are characterized by both form and purpose, identifying the genre of a document provides information as to the document's purpose and its fit to the user's situation, which can be otherwise difficult to assess. We begin by outlining the possible role of genre identification in the information-retrieval process. Our assumption is that genre identification would enhance searching, first because we know that topic alone is not enough to define an information problem and, second, because search results containing genre information would be more easily understandable. Next, we discuss how information professionals have traditionally tackled the issues of representing genre in settings where topical representation is the norm. Finally, we address the issues of studying the efficacy of identifying genre in large digital collections. Because genre is often an implicit notion, studying it in a systematic way presents many problems. We outline a research protocol that would provide guidance for identifying Web document genres, for observing how genre is used in searching and evaluating search results, and finally for representing and visualizing genres.
  6. Organizing Internet resources : metadata and the Web (1997) 0.00
    9.829961E-4 = product of:
      0.013761944 = sum of:
        0.013761944 = product of:
          0.04128583 = sum of:
            0.04128583 = weight(_text_:29 in 2562) [ClassicSimilarity], result of:
              0.04128583 = score(doc=2562,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.46638384 = fieldWeight in 2562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2562)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Bulletin of the American Society for Information Science. 24(1997) no.1, Oct./Nov., S.4-29
  7. Weibel, S.; Miller, E.: Cataloging syntax and public policy meet in PICS (1997) 0.00
    6.553308E-4 = product of:
      0.00917463 = sum of:
        0.00917463 = product of:
          0.027523888 = sum of:
            0.027523888 = weight(_text_:29 in 1561) [ClassicSimilarity], result of:
              0.027523888 = score(doc=1561,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.31092256 = fieldWeight in 1561, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1561)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    OCLC newsletter. 1997, May/June, S.28-29
  8. Rogers, D.: Cataloguing Internet resources : the evolution of the Dublin Core metadata set (1997) 0.00
    6.494356E-4 = product of:
      0.009092098 = sum of:
        0.009092098 = product of:
          0.027276294 = sum of:
            0.027276294 = weight(_text_:22 in 903) [ClassicSimilarity], result of:
              0.027276294 = score(doc=903,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.30952093 = fieldWeight in 903, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=903)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Cataloguing Australia. 23(1997) nos.1/2, S.17-22
  9. Lam, V.-T.: Cataloging Internet resources : Why, what, how (2000) 0.00
    5.734144E-4 = product of:
      0.008027801 = sum of:
        0.008027801 = product of:
          0.024083402 = sum of:
            0.024083402 = weight(_text_:29 in 967) [ClassicSimilarity], result of:
              0.024083402 = score(doc=967,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.27205724 = fieldWeight in 967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=967)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Cataloging and classification quarterly. 29(2000) no.3, S.49-61
  10. Caplan, P.; Guenther, R.: Metadata for Internet resources : the Dublin Core Metadata Elements Set and its mapping to USMARC (1996) 0.00
    5.6825613E-4 = product of:
      0.007955586 = sum of:
        0.007955586 = product of:
          0.023866756 = sum of:
            0.023866756 = weight(_text_:22 in 6128) [ClassicSimilarity], result of:
              0.023866756 = score(doc=6128,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.2708308 = fieldWeight in 6128, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6128)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Series
    Cataloging and classification quarterly; vol.22, nos.3/4