Search (25 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × theme_ss:"Suchmaschinen"
  • × year_i:[2000 TO 2010}
  1. Drabenstott, K.M.: Web search strategies (2000) 0.02
    0.015505663 = product of:
      0.031011326 = sum of:
        0.031011326 = sum of:
          0.0060511357 = weight(_text_:a in 1188) [ClassicSimilarity], result of:
            0.0060511357 = score(doc=1188,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.11394546 = fieldWeight in 1188, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=1188)
          0.02496019 = weight(_text_:22 in 1188) [ClassicSimilarity], result of:
            0.02496019 = score(doc=1188,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 1188, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1188)
      0.5 = coord(1/2)
    
    Abstract
    Surfing the World Wide Web used to be cool, dude, real cool. But things have gotten hot - so hot that finding something useful an the Web is no longer cool. It is suffocating Web searchers in the smoke and debris of mountain-sized lists of hits, decisions about which search engines they should use, whether they will get lost in the dizzying maze of a subject directory, use the right syntax for the search engine at hand, enter keywords that are likely to retrieve hits an the topics they have in mind, or enlist a browser that has sufficient functionality to display the most promising hits. When it comes to Web searching, in a few short years we have gone from the cool image of surfing the Web into the frying pan of searching the Web. We can turn down the heat by rethinking what Web searchers are doing and introduce some order into the chaos. Web search strategies that are tool-based-oriented to specific Web searching tools such as search en gines, subject directories, and meta search engines-have been widely promoted, and these strategies are just not working. It is time to dissect what Web searching tools expect from searchers and adjust our search strategies to these new tools. This discussion offers Web searchers help in the form of search strategies that are based an strategies that librarians have been using for a long time to search commercial information retrieval systems like Dialog, NEXIS, Wilsonline, FirstSearch, and Data-Star.
    Date
    22. 9.1997 19:16:05
    Type
    a
  2. Hewett, S.: MathGate - a gateway to Internet resources for mathematicians (2000) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 4877) [ClassicSimilarity], result of:
              0.01339476 = score(doc=4877,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 4877, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4877)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Spink, A.; Gunar, O.: E-Commerce Web queries : Excite and AskJeeves study (2001) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 910) [ClassicSimilarity], result of:
              0.0108246 = score(doc=910,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 910, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=910)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Warnick, W.L.; Leberman, A.; Scott, R.L.; Spence, K.J.; Johnsom, L.A.; Allen, V.S.: Searching the deep Web : directed query engine applications at the Department of Energy (2001) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 1215) [ClassicSimilarity], result of:
              0.00994303 = score(doc=1215,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 1215, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1215)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Directed Query Engines, an emerging class of search engine specifically designed to access distributed resources on the deep web, offer the opportunity to create inexpensive digital libraries. Already, one such engine, Distributed Explorer, has been used to select and assemble high quality information resources and incorporate them into publicly available systems for the physical sciences. By nesting Directed Query Engines so that one query launches several other engines in a cascading fashion, enormous virtual collections may soon be assembled to form a comprehensive information infrastructure for the physical sciences. Once a Directed Query Engine has been configured for a set of information resources, distributed alerts tools can provide patrons with personalized, profile-based notices of recent additions to any of the selected resources. Due to the potentially enormous size and scope of Directed Query Engine applications, consideration must be given to issues surrounding the representation of large quantities of information from multiple, heterogeneous sources.
    Type
    a
  5. Butler, D.: Souped-up search engines (2000) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2139) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2139,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2139, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2139)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For scientists, finding the information they want on the WWW is a hit-and-miss affair. But, as Declan Butler reports, more sophisticated and specialized search technlogies are promising to change all that
    Type
    a
  6. Mansourian, I.: Web search efficacy : definition and implementation (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2565) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2565,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2565, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2565)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to report a number of factors that are perceived by web users as influential elements in their search procedure. The paper introduces a new conceptual measure called "web search efficacy" (hereafter WSE) to evaluate the performance of searches mainly based on users' perceptions. Design/methodology/approach - A rich dataset of a wider study was inductively re-explored to identify different categories that are perceived influential by web users on the final outcome of their searches. A selective review of the literature was carried out to discover to what extent previous research supports the findings of the current study. Findings - The analysis of the dataset led to the identification of five categories of influential factors. Within each group different factors have been recognized. Accordingly, the concept of WSE has been introduced. The five "Ss" which determine WSE are searcher's performance, search tool's performance, search strategy, search topic, and search situation. Research limitations/implications - The research body is scattered in different areas and it is difficult to carry out a comprehensive review. The WSE table, which is derived from the empirical data and was supported by previous research, can be employed for further research in various groups of web users. Originality/value - The paper contributes to the area of information seeking on the web by providing researchers with a new conceptual framework to evaluate the efficiency of each search session and identify the underlying factors on the final outcome of web searching.
    Type
    a
  7. Bharat, K.: SearchPad : explicit capture of search context to support Web search (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3432) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3432,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3432, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3432)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Zhang, D.; Dong, Y.: ¬An effective algorithm to rank Web resources (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3662) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3662,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3662)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Lu, G.; Williams, B.; You, C.: ¬An effective World Wide Web image search engine (2001) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 5655) [ClassicSimilarity], result of:
              0.009471525 = score(doc=5655,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 5655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5655)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Granum, G.; Barker, P.: ¬An EASIER way to search online engineering resource (2000) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 4876) [ClassicSimilarity], result of:
              0.009374379 = score(doc=4876,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 4876, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4876)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    EEVL consists of several distinct resources, which exist as separate databases. This article describes the approach taken to tackle a particular problem that was identified through evaluation studies, namely, that searches of the EEVL catalogue too frequently matched nor records. The solution described in this paper is a cross-search facility for 3 of the EEVL databases
    Type
    a
  11. Assadi, H.; Beauvisage, T.: ¬A comparative study of six french-speaking Web directories (2003) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2723) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2723,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2723, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2723)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a comparative study of six French-language Web directories (MSN, Nomade, Open Directory, Voila, Voila Pages Perso, and Yahoo). The study focuses an the quantitative and qualitative aspects of the organization of these directories, and an the way in which they describe sites. It reveals a wide variety of structures, content and organizational principles. In this respect, Web directories do not correspond to classic theories of classification. They highlight the difficulty of proposing a structured representation of the heterogeneous content of the Web.
    Type
    a
  12. Rowlands, I.; Nicholas, D.; Williams, P.; Huntington, P.; Fieldhouse, M.; Gunter, B.; Withey, R.; Jamali, H.R.; Dobrowolski, T.; Tenopir, C.: ¬The Google generation : the information behaviour of the researcher of the future (2008) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 2017) [ClassicSimilarity], result of:
              0.00894975 = score(doc=2017,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 2017, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2017)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This article is an edited version of a report commissioned by the British Library and JISC to identify how the specialist researchers of the future (those born after 1993) are likely to access and interact with digital resources in five to ten years' time. The purpose is to investigate the impact of digital transition on the information behaviour of the Google Generation and to guide library and information services to anticipate and react to any new or emerging behaviours in the most effective way. Design/methodology/approach - The study was virtually longitudinal and is based on a number of extensive reviews of related literature, survey data mining and a deep log analysis of a British Library and a JISC web site intended for younger people. Findings - The study shows that much of the impact of ICTs on the young has been overestimated. The study claims that although young people demonstrate an apparent ease and familiarity with computers, they rely heavily on search engines, view rather than read and do not possess the critical and analytical skills to assess the information that they find on the web. Originality/value - The paper reports on a study that overturns the common assumption that the "Google generation" is the most web-literate.
    Type
    a
  13. Nait-Baha, L.; Jackiewicz, A.; Djioua, B.; Laublet, P.: Query reformulation for information retrieval on the Web using the point of view methodology : preliminary results (2001) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 249) [ClassicSimilarity], result of:
              0.008118451 = score(doc=249,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 249, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The work we are presenting is devoted to the information collected on the WWW. By the term collected we mean the whole process of retrieving, extracting and presenting results to the user. This research is part of the RAP (Research, Analyze, Propose) project in which we propose to combine two methods: (i) query reformulation using linguistic markers according to a given point of view; and (ii) text semantic analysis by means of contextual exploration results (Descles, 1991). The general project architecture describing the interactions between the users, the RAP system and the WWW search engines is presented in Nait-Baha et al. (1998). We will focus this paper on showing how we use linguistic markers to reformulate the queries according to a given point of view
    Type
    a
  14. Gorbunov, A.L.: Relevance of Web documents : ghosts consensus method (2002) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1005) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1005,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1005, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1005)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The dominant method currently used to improve the quality of Internet search systems is often called "digital democracy." Such an approach implies the utilization of the majority opinion of Internet users to determine the most relevant documents: for example, citation index usage for sorting of search results (google.com) or an enrichment of a query with terms that are asked frequently in relation with the query's theme. "Digital democracy" is an effective instrument in many cases, but it has an unavoidable shortcoming, which is a matter of principle: the average intellectual and cultural level of Internet users is very low- everyone knows what kind of information is dominant in Internet query statistics. Therefore, when one searches the Internet by means of "digital democracy" systems, one gets answers that reflect an underlying assumption that the user's mind potential is very low, and that his cultural interests are not demanding. Thus, it is more correct to use the term "digital ochlocracy" to refer to Internet search systems with "digital democracy." Based an the well-known mathematical mechanism of linear programming, we propose a method to solve the indicated problem.
    Type
    a
  15. Zins, C.: Models for classifying Internet resources (2002) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1160) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1160,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1160, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1160)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Designing systematic access to Internet resources is a major item an the agenda of researchers and practitioners in the field of information science, and is the focus of this study. A critical analysis of classification schemes used in major portals and Web classified directories exposes inconsistencies in the way they classify Internet resources. The inconsistencies indicate that the developers fall to differentiate the various classificatory models, and are unaware of their different rationales. The study establishes eight classificatory models for resources available to Internet users. Internet resources can be classified by subjects, objects, applications, users, locations, reference sources, media, and languages. The first five models are contentrelated; namely they characterize the content of the resource. The other three models are formst-related; namely they characterize the format of the resource or its technological infrastructure. The study identifies and formulates the eight classificatory models, analyzes their rationales, and discusses alternative ways to combine them in a faceted integrated classification scheme.
    Type
    a
  16. Hiom, D.: SOSIG : an Internet hub for the social sciences, business and law (2000) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 4871) [ClassicSimilarity], result of:
              0.007654148 = score(doc=4871,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 4871, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4871)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    SOSIG (Social Science Information Gateway) aims to provide a trusted source of selected, high quality Internet information for researchers and practitioners in the social sciences, business and law. This article tracks the the development of the gateway since its inception in 1994, describes the current features and looks at some of the associated research and development areas that are taking place around the service including the automatic classification of Web resources and experiments with multilingual thesauri
    Type
    a
  17. Ross, N.C.M.; Wolfram, D.: End user searching on the Internet : an analysis of term pair topics submitted to the Excite search engine (2000) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4998) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4998,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4998, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4998)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Queries submitted to the Excite search engine were analyzed for subject content based on the cooccurrence of terms within multiterm queries. More than 1000 of the most frequently cooccurring term pairs were categorized into one or more of 30 developed subject areas. Subject area frequencies and their cooccurrences with one another were tallied and analyzed using hierarchical cluster analysis and multidimensional scaling. The cluster analyses revealed several anticipated and a few unanticipated groupings of subjects, resulting in several well-defined high-level clusters of broad subject areas. Multidimensional scaling of subject cooccurrences revealed similar relationships among the different subject categories. Applications that arise from a better understanding of the topics users search and their relationships are discussed
    Type
    a
  18. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3091) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3091,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3091, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
    Type
    a
  19. Hupfer, M.E.; Detlor, B.: Gender and Web information seeking : a self-concept orientation model (2006) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5119) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5119,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5119, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5119)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Adapting the consumer behavior selectivity model to the Web environment, this paper's key contribution is the introduction of a self-concept orientation model of Web information seeking. This model, which addresses gender, effort, and information content factors, questions the commonly assumed equivalence of sex and gender by specifying the measurement of gender-related selfconcept traits known as self- and other-orientation. Regression analyses identified associations between self-orientation, other-orientation, and self-reported search frequencies for content with identical subject domain (e.g., medical information, government information) and differing relevance (i.e., important to the individual personally versus important to someone close to him or her). Self- and other-orientation interacted such that when individuals were highly self-oriented, their frequency of search for both self- and other-relevant information depended on their level of other-orientation. Specifically, high-self/high-other individuals, with a comprehensive processing strategy, searched most often, whereas high-self/low-other respondents, with an effort minimization strategy, reported the lowest search frequencies. This interaction pattern was even more pronounced for other-relevant information seeking. We found no sex differences in search frequency for either self-relevant or other-relevant information.
    Type
    a
  20. Spink, A.; Wolfram, D.; Jansen, B.J.; Saracevic, T.: Searching the Web : the public and their queries (2001) 0.00
    0.0015127839 = product of:
      0.0030255679 = sum of:
        0.0030255679 = product of:
          0.0060511357 = sum of:
            0.0060511357 = weight(_text_:a in 6980) [ClassicSimilarity], result of:
              0.0060511357 = score(doc=6980,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11394546 = fieldWeight in 6980, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6980)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In previous articles, we reported the state of Web searching in 1997 (Jansen, Spink, & Saracevic, 2000) and in 1999 (Spink, Wolfram, Jansen, & Saracevic, 2001). Such snapshot studies and statistics on Web use appear regularly (OCLC, 1999), but provide little information about Web searching trends. In this article, we compare and contrast results from our two previous studies of Excite queries' data sets, each containing over 1 million queries submitted by over 200,000 Excite users collected on 16 September 1997 and 20 December 1999. We examine how public Web searching changing during that 2-year time period. As Table 1 shows, the overall structure of Web queries in some areas did not change, while in others we see change from 1997 to 1999. Our comparison shows how Web searching changed incrementally and also dramatically. We see some moves toward greater simplicity, including shorter queries (i.e., fewer terms) and shorter sessions (i.e., fewer queries per user), with little modification (addition or deletion) of terms in subsequent queries. The trend toward shorter queries suggests that Web information content should target specific terms in order to reach Web users. Another trend was to view fewer pages of results per query. Most Excite users examined only one page of results per query, since an Excite results page contains ten ranked Web sites. Were users satisfied with the results and did not need to view more pages? It appears that the public continues to have a low tolerance of wading through retrieved sites. This decline in interactivity levels is a disturbing finding for the future of Web searching. Queries that included Boolean operators were in the minority, but the percentage increased between the two time periods. Most Boolean use involved the AND operator with many mistakes. The use of relevance feedback almost doubled from 1997 to 1999, but overall use was still small. An unusually large number of terms were used with low frequency, such as personal names, spelling errors, non-English words, and Web-specific terms, such as URLs. Web query vocabulary contains more words than found in large English texts in general. The public language of Web queries has its own and unique characteristics. How did Web searching topics change from 1997 to 1999? We classified a random sample of 2,414 queries from 1997 and 2,539 queries from 1999 into 11 categories (Table 2). From 1997 to 1999, Web searching shifted from entertainment, recreation and sex, and pornography, preferences to e-commerce-related topics under commerce, travel, employment, and economy. This shift coincided with changes in information distribution on the publicly indexed Web.
    Type
    a