Search (8 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × theme_ss:"Suchtaktik"
  1. Drabenstott, K.M.: Web search strategies (2000) 0.05
    0.05032327 = product of:
      0.10064654 = sum of:
        0.08850929 = weight(_text_:engines in 1188) [ClassicSimilarity], result of:
          0.08850929 = score(doc=1188,freq=6.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.38891944 = fieldWeight in 1188, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.03125 = fieldNorm(doc=1188)
        0.012137249 = product of:
          0.024274498 = sum of:
            0.024274498 = weight(_text_:22 in 1188) [ClassicSimilarity], result of:
              0.024274498 = score(doc=1188,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.15476047 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Surfing the World Wide Web used to be cool, dude, real cool. But things have gotten hot - so hot that finding something useful an the Web is no longer cool. It is suffocating Web searchers in the smoke and debris of mountain-sized lists of hits, decisions about which search engines they should use, whether they will get lost in the dizzying maze of a subject directory, use the right syntax for the search engine at hand, enter keywords that are likely to retrieve hits an the topics they have in mind, or enlist a browser that has sufficient functionality to display the most promising hits. When it comes to Web searching, in a few short years we have gone from the cool image of surfing the Web into the frying pan of searching the Web. We can turn down the heat by rethinking what Web searchers are doing and introduce some order into the chaos. Web search strategies that are tool-based-oriented to specific Web searching tools such as search en gines, subject directories, and meta search engines-have been widely promoted, and these strategies are just not working. It is time to dissect what Web searching tools expect from searchers and adjust our search strategies to these new tools. This discussion offers Web searchers help in the form of search strategies that are based an strategies that librarians have been using for a long time to search commercial information retrieval systems like Dialog, NEXIS, Wilsonline, FirstSearch, and Data-Star.
    Content
    "Web searching is different from searching commercial IR systems. We can learn from search strategies recommended for searching IR systems, but most won't be effective for Web searching. Web searchers need strate gies that let search engines do the job they were designed to do. This article presents six new Web searching strategies that do just that."
    Date
    22. 9.1997 19:16:05
  2. Ardito, S.C.: ¬The Internet : beginning or end of organized information? (1998) 0.03
    0.025550429 = product of:
      0.102201715 = sum of:
        0.102201715 = weight(_text_:engines in 1664) [ClassicSimilarity], result of:
          0.102201715 = score(doc=1664,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.44908544 = fieldWeight in 1664, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0625 = fieldNorm(doc=1664)
      0.25 = coord(1/4)
    
    Abstract
    Many information professionals still seem loathe to conduct searches on the Internet, preferring instead to continue to use commercial, proprietary systems. Compares the characteristics and advantages of search strategies for traditional databases with those for the Internet. Discusses future developments in Internet search engines and concludes that the merger of commercial database expertise with Internet technology and accessibility will enrich and simplify the end user's expectation
  3. Lucas, W.; Topi, H.: Form and function : the impact of query term and operator usage on Web search results (2002) 0.02
    0.022583602 = product of:
      0.09033441 = sum of:
        0.09033441 = weight(_text_:engines in 198) [ClassicSimilarity], result of:
          0.09033441 = score(doc=198,freq=4.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.39693922 = fieldWeight in 198, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=198)
      0.25 = coord(1/4)
    
    Abstract
    Conventional wisdom holds that queries to information retrieval systems will yield more relevant results if they contain multiple topic-related terms and use Boolean and phrase operators to enhance interpretation. Although studies have shown that the users of Web-based search engines typically enter short, term-based queries and rarely use search operators, little information exists concerning the effects of term and operator usage on the relevancy of search results. In this study, search engine users formulated queries on eight search topics. Each query was submitted to the user-specified search engine, and relevancy ratings for the retrieved pages were assigned. Expert-formulated queries were also submitted and provided a basis for comparing relevancy ratings across search engines. Data analysis based on our research model of the term and operator factors affecting relevancy was then conducted. The results show that the difference in the number of terms between expert and nonexpert searches, the percentage of matching terms between those searches, and the erroneous use of nonsupported operators in nonexpert searches explain most of the variation in the relevancy of search results. These findings highlight the need for designing search engine interfaces that provide greater support in the areas of term selection and operator usage
  4. Notess, G.R.: Searching the hidden Internet (1997) 0.02
    0.022356624 = product of:
      0.089426495 = sum of:
        0.089426495 = weight(_text_:engines in 4802) [ClassicSimilarity], result of:
          0.089426495 = score(doc=4802,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.39294976 = fieldWeight in 4802, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4802)
      0.25 = coord(1/4)
    
    Abstract
    WWW search engines are not comprehensive in their searches. They do not search: Adobe PDF file or other formatted files, registration files, and data sets. Basic search strategies can give access to some of the hidden content. 2 databases are also available to provide access to the hidden information. Excite's News Tracker searches a database of selected online publications. ATI databases from PLS, Inc. presents access to a variety of Internet accessible databases that may require membership or the payment of a registration fee
  5. Kim, K.-S.; Allen, B.: Cognitive and task influences on Web searching behavior (2002) 0.02
    0.022356624 = product of:
      0.089426495 = sum of:
        0.089426495 = weight(_text_:engines in 199) [ClassicSimilarity], result of:
          0.089426495 = score(doc=199,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.39294976 = fieldWeight in 199, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0546875 = fieldNorm(doc=199)
      0.25 = coord(1/4)
    
    Abstract
    Users' individual differences and tasks are important factors that influence the use of information systems. Two independent investigations were conducted to study the impact of differences in users' cognition and search tasks on Web search activities and outcomes. Strong task effects were found on search activities and outcomes, whereas interactions between cognitive and task variables were found on search activities only. These results imply that the flexibility of the Web and Web search engines allows different users to complete different search tasks successfully. However, the search techniques used and the efficiency of the searches appear to depend on how well the individual searcher fits with the specific task
  6. Pu, H.-T.; Chuang, S.-L.; Yang, C.: Subject categorization of query terms for exploring Web users' search interests (2002) 0.02
    0.015969018 = product of:
      0.06387607 = sum of:
        0.06387607 = weight(_text_:engines in 587) [ClassicSimilarity], result of:
          0.06387607 = score(doc=587,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.2806784 = fieldWeight in 587, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=587)
      0.25 = coord(1/4)
    
    Abstract
    Subject content analysis of Web query terms is essential to understand Web searching interests. Such analysis includes exploring search topics and observing changes in their frequency distributions with time. To provide a basis for in-depth analysis of users' search interests on a larger scale, this article presents a query categorization approach to automatically classifying Web query terms into broad subject categories. Because a query is short in length and simple in structure, its intended subject(s) of search is difficult to judge. Our approach, therefore, combines the search processes of real-world search engines to obtain highly ranked Web documents based on each unknown query term. These documents are used to extract cooccurring terms and to create a feature set. An effective ranking function has also been developed to find the most appropriate categories. Three search engine logs in Taiwan were collected and tested. They contained over 5 million queries from different periods of time. The achieved performance is quite encouraging compared with that of human categorization. The experimental results demonstrate that the approach is efficient in dealing with large numbers of queries and adaptable to the dynamic Web environment. Through good integration of human and machine efforts, the frequency distributions of subject categories in response to changes in users' search interests can be systematically observed in real time. The approach has also shown potential for use in various information retrieval applications, and provides a basis for further Web searching studies.
  7. Spink, A.; Danby, S.; Mallan, K.; Butler, C.: Exploring young children's web searching and technoliteracy (2010) 0.02
    0.015969018 = product of:
      0.06387607 = sum of:
        0.06387607 = weight(_text_:engines in 3623) [ClassicSimilarity], result of:
          0.06387607 = score(doc=3623,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.2806784 = fieldWeight in 3623, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3623)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to report findings from an exploratory study investigating the web interactions and technoliteracy of children in the early childhood years. Previous research has studied aspects of older children's technoliteracy and web searching; however, few studies have analyzed web search data from children younger than six years of age. Design/methodology/approach - The study explored the Google web searching and technoliteracy of young children who are enrolled in a "preparatory classroom" or kindergarten (the year before young children begin compulsory schooling in Queensland, Australia). Young children were video- and audio-taped while conducting Google web searches in the classroom. The data were qualitatively analysed to understand the young children's web search behaviour. Findings - The findings show that young children engage in complex web searches, including keyword searching and browsing, query formulation and reformulation, relevance judgments, successive searches, information multitasking and collaborative behaviours. The study results provide significant initial insights into young children's web searching and technoliteracy. Practical implications - The use of web search engines by young children is an important research area with implications for educators and web technologies developers. Originality/value - This is the first study of young children's interaction with a web search engine.
  8. Hsieh-Yee, I.: Search tactics of Web users in searching for texts, graphics, known items and subjects : a search simulation study (1998) 0.00
    0.0045514684 = product of:
      0.018205874 = sum of:
        0.018205874 = product of:
          0.036411747 = sum of:
            0.036411747 = weight(_text_:22 in 2404) [ClassicSimilarity], result of:
              0.036411747 = score(doc=2404,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.23214069 = fieldWeight in 2404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2404)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    25.12.1998 19:22:31