Search (14 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × theme_ss:"Suchtaktik"
  1. Pu, H.-T.; Chuang, S.-L.; Yang, C.: Subject categorization of query terms for exploring Web users' search interests (2002) 0.14
    0.14214307 = product of:
      0.1895241 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 587) [ClassicSimilarity], result of:
              0.023542227 = score(doc=587,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 587, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=587)
          0.25 = coord(1/4)
        0.056460675 = weight(_text_:term in 587) [ClassicSimilarity], result of:
          0.056460675 = score(doc=587,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 587, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=587)
        0.12717786 = weight(_text_:frequency in 587) [ClassicSimilarity], result of:
          0.12717786 = score(doc=587,freq=4.0), product of:
            0.27643865 = queryWeight, product of:
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.04694356 = queryNorm
            0.46005818 = fieldWeight in 587, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.0390625 = fieldNorm(doc=587)
      0.75 = coord(3/4)
    
    Abstract
    Subject content analysis of Web query terms is essential to understand Web searching interests. Such analysis includes exploring search topics and observing changes in their frequency distributions with time. To provide a basis for in-depth analysis of users' search interests on a larger scale, this article presents a query categorization approach to automatically classifying Web query terms into broad subject categories. Because a query is short in length and simple in structure, its intended subject(s) of search is difficult to judge. Our approach, therefore, combines the search processes of real-world search engines to obtain highly ranked Web documents based on each unknown query term. These documents are used to extract cooccurring terms and to create a feature set. An effective ranking function has also been developed to find the most appropriate categories. Three search engine logs in Taiwan were collected and tested. They contained over 5 million queries from different periods of time. The achieved performance is quite encouraging compared with that of human categorization. The experimental results demonstrate that the approach is efficient in dealing with large numbers of queries and adaptable to the dynamic Web environment. Through good integration of human and machine efforts, the frequency distributions of subject categories in response to changes in users' search interests can be systematically observed in real time. The approach has also shown potential for use in various information retrieval applications, and provides a basis for further Web searching studies.
  2. Lucas, W.; Topi, H.: Form and function : the impact of query term and operator usage on Web search results (2002) 0.07
    0.068221994 = product of:
      0.13644399 = sum of:
        0.010194084 = product of:
          0.040776335 = sum of:
            0.040776335 = weight(_text_:based in 198) [ClassicSimilarity], result of:
              0.040776335 = score(doc=198,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28829288 = fieldWeight in 198, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=198)
          0.25 = coord(1/4)
        0.12624991 = weight(_text_:term in 198) [ClassicSimilarity], result of:
          0.12624991 = score(doc=198,freq=10.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.5763782 = fieldWeight in 198, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=198)
      0.5 = coord(2/4)
    
    Abstract
    Conventional wisdom holds that queries to information retrieval systems will yield more relevant results if they contain multiple topic-related terms and use Boolean and phrase operators to enhance interpretation. Although studies have shown that the users of Web-based search engines typically enter short, term-based queries and rarely use search operators, little information exists concerning the effects of term and operator usage on the relevancy of search results. In this study, search engine users formulated queries on eight search topics. Each query was submitted to the user-specified search engine, and relevancy ratings for the retrieved pages were assigned. Expert-formulated queries were also submitted and provided a basis for comparing relevancy ratings across search engines. Data analysis based on our research model of the term and operator factors affecting relevancy was then conducted. The results show that the difference in the number of terms between expert and nonexpert searches, the percentage of matching terms between those searches, and the erroneous use of nonsupported operators in nonexpert searches explain most of the variation in the relevancy of search results. These findings highlight the need for designing search engine interfaces that provide greater support in the areas of term selection and operator usage
  3. Stacey, Alison; Stacey, Adrian: Effective information retrieval from the Internet : an advanced user's guide (2004) 0.04
    0.04147133 = product of:
      0.08294266 = sum of:
        0.0047084456 = product of:
          0.018833783 = sum of:
            0.018833783 = weight(_text_:based in 4497) [ClassicSimilarity], result of:
              0.018833783 = score(doc=4497,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.13315678 = fieldWeight in 4497, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4497)
          0.25 = coord(1/4)
        0.07823421 = weight(_text_:term in 4497) [ClassicSimilarity], result of:
          0.07823421 = score(doc=4497,freq=6.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.35716853 = fieldWeight in 4497, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
      0.5 = coord(2/4)
    
    Content
    Key Features - Importantly, the book enables readers to develop strategies which will continue to be useful despite the rapidly-evolving state of the Internet and Internet technologies - it is not about technological `tricks'. - Enables readers to be aware of and compensate for bias and errors which are ubiquitous an the Internet. - Provides contemporary information an the deficiencies in web skills of novice users as well as practical techniques for teaching such users. The Authors Dr Alison Stacey works at the Learning Resource Centre, Cambridge Regional College. Dr Adrian Stacey, formerly based at Cambridge University, is a software programmer. Readership The book is aimed at a wide range of librarians and other information professionals who need to retrieve information from the Internet efficiently, to evaluate their confidence in the information they retrieve and/or to train others to use the Internet. It is primarily aimed at intermediate to advanced users of the Internet. Contents Fundamentals of information retrieval from the Internet - why learn web searching technique; types of information requests; patterns for information retrieval; leveraging the technology: Search term choice: pinpointing information an the web - why choose queries carefully; making search terms work together; how to pick search terms; finding the 'unfindable': Blas an the Internet - importance of bias; sources of bias; usergenerated bias: selecting information with which you already agree; assessing and compensating for bias; case studies: Query reformulation and longer term strategies - how to interact with your search engine; foraging for information; long term information retrieval: using the Internet to find trends; automating searches: how to make your machine do your work: Assessing the quality of results- how to assess and ensure quality: The novice user and teaching internet skills - novice users and their problems with the web; case study: research in a college library; interpreting 'second hand' web information.
  4. Hupfer, M.E.; Detlor, B.: Gender and Web information seeking : a self-concept orientation model (2006) 0.03
    0.031794466 = product of:
      0.12717786 = sum of:
        0.12717786 = weight(_text_:frequency in 5119) [ClassicSimilarity], result of:
          0.12717786 = score(doc=5119,freq=4.0), product of:
            0.27643865 = queryWeight, product of:
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.04694356 = queryNorm
            0.46005818 = fieldWeight in 5119, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5119)
      0.25 = coord(1/4)
    
    Abstract
    Adapting the consumer behavior selectivity model to the Web environment, this paper's key contribution is the introduction of a self-concept orientation model of Web information seeking. This model, which addresses gender, effort, and information content factors, questions the commonly assumed equivalence of sex and gender by specifying the measurement of gender-related selfconcept traits known as self- and other-orientation. Regression analyses identified associations between self-orientation, other-orientation, and self-reported search frequencies for content with identical subject domain (e.g., medical information, government information) and differing relevance (i.e., important to the individual personally versus important to someone close to him or her). Self- and other-orientation interacted such that when individuals were highly self-oriented, their frequency of search for both self- and other-relevant information depended on their level of other-orientation. Specifically, high-self/high-other individuals, with a comprehensive processing strategy, searched most often, whereas high-self/low-other respondents, with an effort minimization strategy, reported the lowest search frequencies. This interaction pattern was even more pronounced for other-relevant information seeking. We found no sex differences in search frequency for either self-relevant or other-relevant information.
  5. Nori, R.: Web searching and navigation : age, intelligence, and familiarity (2020) 0.02
    0.022482082 = product of:
      0.08992833 = sum of:
        0.08992833 = weight(_text_:frequency in 5945) [ClassicSimilarity], result of:
          0.08992833 = score(doc=5945,freq=2.0), product of:
            0.27643865 = queryWeight, product of:
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.04694356 = queryNorm
            0.32531026 = fieldWeight in 5945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5945)
      0.25 = coord(1/4)
    
    Abstract
    In using the Internet to solve everyday problems, older adults tend to find fewer correct answers compared to younger adults. Some authors have argued that these differences could be explained by age-related decline. The present study aimed to analyze the relationship between web-searching navigation and users' age, considering the Intelligence Quotient (IQ) and frequency of Internet and personal computer use. The intent was to identify differences due to age and not to other variables (that is, cognitive decline, expertise with the tool). Eighteen students (18-30?years) and 18 older adults (60-75?years) took part in the experiment. Inclusion criteria were the frequent use of computers and a web-searching activity; the older adults performed the Mini-Mental State Examination to exclude cognitive impairment. Participants were requested to perform the Kaufman Brief Intelligence Test 2nd ed. to measure their IQ level, and nine everyday web-searching tasks of differing complexity. The results showed that older participants spent more time on solving tasks than younger participants, but with the same accuracy as young people. Furthermore, nonverbal IQ improved performance in terms of time among the older participants. Age did not influence web-searching behavior in users with normal expertise and intelligence.
  6. Jansen, B.J.; Resnick, M.: ¬An examination of searcher's perceptions of nonsponsored and sponsored links during ecommerce Web searching (2006) 0.01
    0.014115169 = product of:
      0.056460675 = sum of:
        0.056460675 = weight(_text_:term in 221) [ClassicSimilarity], result of:
          0.056460675 = score(doc=221,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 221, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
      0.25 = coord(1/4)
    
    Abstract
    In this article, we report results of an investigation into the effect of sponsored links on ecommerce information seeking on the Web. In this research, 56 participants each engaged in six ecommerce Web searching tasks. We extracted these tasks from the transaction log of a Web search engine, so they represent actual ecommerce searching information needs. Using 60 organic and 30 sponsored Web links, the quality of the Web search engine results was controlled by switching nonsponsored and sponsored links on half of the tasks for each participant. This allowed for investigating the bias toward sponsored links while controlling for quality of content. The study also investigated the relationship between searching self-efficacy, searching experience, types of ecommerce information needs, and the order of links on the viewing of sponsored links. Data included 2,453 interactions with links from result pages and 961 utterances evaluating these links. The results of the study indicate that there is a strong preference for nonsponsored links, with searchers viewing these results first more than 82% of the time. Searching self-efficacy and experience does not increase the likelihood of viewing sponsored links, and the order of the result listing does not appear to affect searcher evaluation of sponsored links. The implications for sponsored links as a long-term business model are discussed.
  7. Drabenstott, K.M.: Web search strategies (2000) 0.01
    0.009689578 = product of:
      0.019379156 = sum of:
        0.0066587473 = product of:
          0.02663499 = sum of:
            0.02663499 = weight(_text_:based in 1188) [ClassicSimilarity], result of:
              0.02663499 = score(doc=1188,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.18831211 = fieldWeight in 1188, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1188)
          0.25 = coord(1/4)
        0.012720408 = product of:
          0.025440816 = sum of:
            0.025440816 = weight(_text_:22 in 1188) [ClassicSimilarity], result of:
              0.025440816 = score(doc=1188,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.15476047 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Surfing the World Wide Web used to be cool, dude, real cool. But things have gotten hot - so hot that finding something useful an the Web is no longer cool. It is suffocating Web searchers in the smoke and debris of mountain-sized lists of hits, decisions about which search engines they should use, whether they will get lost in the dizzying maze of a subject directory, use the right syntax for the search engine at hand, enter keywords that are likely to retrieve hits an the topics they have in mind, or enlist a browser that has sufficient functionality to display the most promising hits. When it comes to Web searching, in a few short years we have gone from the cool image of surfing the Web into the frying pan of searching the Web. We can turn down the heat by rethinking what Web searchers are doing and introduce some order into the chaos. Web search strategies that are tool-based-oriented to specific Web searching tools such as search en gines, subject directories, and meta search engines-have been widely promoted, and these strategies are just not working. It is time to dissect what Web searching tools expect from searchers and adjust our search strategies to these new tools. This discussion offers Web searchers help in the form of search strategies that are based an strategies that librarians have been using for a long time to search commercial information retrieval systems like Dialog, NEXIS, Wilsonline, FirstSearch, and Data-Star.
    Date
    22. 9.1997 19:16:05
  8. Hsieh-Yee, I.: Search tactics of Web users in searching for texts, graphics, known items and subjects : a search simulation study (1998) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 2404) [ClassicSimilarity], result of:
              0.038161222 = score(doc=2404,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 2404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2404)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    25.12.1998 19:22:31
  9. Dennis, S.; Bruza, P.; McArthur, R.: Web searching : a process-oriented experimental study of three interactive search paradigms (2002) 0.00
    0.0036041527 = product of:
      0.014416611 = sum of:
        0.014416611 = product of:
          0.057666443 = sum of:
            0.057666443 = weight(_text_:based in 200) [ClassicSimilarity], result of:
              0.057666443 = score(doc=200,freq=12.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.4077077 = fieldWeight in 200, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=200)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This article compares search effectiveness when using query-based Internet search (via the Google search engine), directory-based search (via Yahoo), and phrase-based query reformulation-assisted search (via the Hyperindex browser) by means of a controlled, user-based experimental study. The focus was to evaluate aspects of the search process. Cognitive load was measured using a secondary digit-monitoring task to quantify the effort of the user in various search states; independent relevance judgements were employed to gauge the quality of the documents accessed during the search process and time was monitored as a function of search state. Results indicated directory-based search does not offer increased relevance over the query-based search (with or without query formulation assistance), and also takes longer. Query reformulation does significantly improve the relevance of the documents through which the user must trawl, particularly when the formulation of query terms is more difficult. However, the improvement in document relevance comes at the cost of increased search time, although this difference is quite small when the search is self-terminated. In addition, the advantage of the query reformulation seems to occur as a consequence of providing more discriminating terms rather than by increasing the length of queries
  10. Kellar, M.; Watters, C.; Shepherd, M.: ¬A field study characterizing Web-based information seeking tasks (2007) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 335) [ClassicSimilarity], result of:
              0.033293735 = score(doc=335,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 335, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=335)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Previous studies have examined various aspects of user behavior on the Web, including general information-seeking patterns, search engine use, and revisitation habits. Little research has been conducted to study how users navigate and interact with their Web browser across different information-seeking tasks. We have conducted a field study of 21 participants, in which we logged detailed Web usage and asked participants to provide task categorizations of their Web usage based on the following categories: Fact Finding, Information Gathering, Browsing, and Transactions. We used implicit measures logged during each task session to provide usage measures such as dwell time, number of pages viewed, and the use of specific browser navigation mechanisms. We also report on differences in how participants interacted with their Web browser across the range of information-seeking tasks. Within each type of task, we found several distinguishing characteristics. In particular, Information Gathering tasks were the most complex; participants spent more time completing this task, viewed more pages, and used the Web browser functions most heavily during this task. The results of this analysis have been used to provide implications for future support of information seeking on the Web as well as direction for future research in this area.
  11. Barrio, P.; Gravano, L.: Sampling strategies for information extraction over the deep web (2017) 0.00
    0.0020388167 = product of:
      0.008155267 = sum of:
        0.008155267 = product of:
          0.032621067 = sum of:
            0.032621067 = weight(_text_:based in 3412) [ClassicSimilarity], result of:
              0.032621067 = score(doc=3412,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2306343 = fieldWeight in 3412, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3412)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Information extraction systems discover structured information in natural language text. Having information in structured form enables much richer querying and data mining than possible over the natural language text. However, information extraction is a computationally expensive task, and hence improving the efficiency of the extraction process over large text collections is of critical interest. In this paper, we focus on an especially valuable family of text collections, namely, the so-called deep-web text collections, whose contents are not crawlable and are only available via querying. Important steps for efficient information extraction over deep-web text collections (e.g., selecting the collections on which to focus the extraction effort, based on their contents; or learning which documents within these collections-and in which order-to process, based on their words and phrases) require having a representative document sample from each collection. These document samples have to be collected by querying the deep-web text collections, an expensive process that renders impractical the existing sampling approaches developed for other data scenarios. In this paper, we systematically study the space of query-based document sampling techniques for information extraction over the deep web. Specifically, we consider (i) alternative query execution schedules, which vary on how they account for the query effectiveness, and (ii) alternative document retrieval and processing schedules, which vary on how they distribute the extraction effort over documents. We report the results of the first large-scale experimental evaluation of sampling techniques for information extraction over the deep web. Our results show the merits and limitations of the alternative query execution and document retrieval and processing strategies, and provide a roadmap for addressing this critically important building block for efficient, scalable information extraction.
  12. Ford, N.; Miller, D.; Moss, N.: Web search strategies and human individual differences : cognitive and demographic factors, Internet attitudes, and approaches (2005) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 3475) [ClassicSimilarity], result of:
              0.028250674 = score(doc=3475,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 3475, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3475)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    The research reported here was an exploratory study that sought to discover the effects of human individual differences an Web search strategy. These differences consisted of (a) study approaches, (b) cognitive and demographic features, and (c) perceptions of and preferred approaches to Web-based information seeking. Sixtyeight master's students used AItaVista to search for information an three assigned search topics graded in terms of complexity. Five hundred seven search queries were factor analyzed to identify relationships between the individual difference variables and Boolean and best-match search strategies. A number of consistent patterns of relationship were found. As task complexity increased, a number of strategic shifts were also observed an the part of searchers possessing particular combinations of characteristics. A second article (published in this issue of JASIST; Ford, Miller, & Moss, 2005) presents a combined analyses of the data including a series of regression analyses.
  13. Ford, N.; Miller, D.; Moss, N.: Web search strategies and human individual differences : a combined analysis (2005) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 3476) [ClassicSimilarity], result of:
              0.028250674 = score(doc=3476,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 3476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3476)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This is the second of two articles published in this issue of JASIST reporting the results of a study investigating relationships between Web search strategies and a range of human individual differences. In this article we provide a combined analysis of the factor analyses previously presented separately in relation to each of three groups of human individual difference (study approaches, cognitive and demographic features, and perceptions of and approaches to Internet-based information seeking). It also introduces two series of regression analyses conducted an data spanning all three individual difference groups. The results are discussed in terms of the extent to which they satisfy the original aim of this exploratory research, namely to identify any relationships between search strategy and individual difference variables for which there is a prima facie case for more focused systematic study. It is argued that a number of such relationships do exist. The results of the project are summarized and suggestions are made for further research.
  14. Mansourian, I.: Web search efficacy : definition and implementation (2008) 0.00
    0.0014713892 = product of:
      0.005885557 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 2565) [ClassicSimilarity], result of:
              0.023542227 = score(doc=2565,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 2565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2565)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to report a number of factors that are perceived by web users as influential elements in their search procedure. The paper introduces a new conceptual measure called "web search efficacy" (hereafter WSE) to evaluate the performance of searches mainly based on users' perceptions. Design/methodology/approach - A rich dataset of a wider study was inductively re-explored to identify different categories that are perceived influential by web users on the final outcome of their searches. A selective review of the literature was carried out to discover to what extent previous research supports the findings of the current study. Findings - The analysis of the dataset led to the identification of five categories of influential factors. Within each group different factors have been recognized. Accordingly, the concept of WSE has been introduced. The five "Ss" which determine WSE are searcher's performance, search tool's performance, search strategy, search topic, and search situation. Research limitations/implications - The research body is scattered in different areas and it is difficult to carry out a comprehensive review. The WSE table, which is derived from the empirical data and was supported by previous research, can be employed for further research in various groups of web users. Originality/value - The paper contributes to the area of information seeking on the web by providing researchers with a new conceptual framework to evaluate the efficiency of each search session and identify the underlying factors on the final outcome of web searching.