Search (13 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × type_ss:"el"
  1. Blosser, J.; Michaelson, R.; Routh. R.; Xia, P.: Defining the landscape of Web resources : Concluding Report of the BAER Web Resources Sub-Group (2000) 0.02
    0.01597808 = product of:
      0.03195616 = sum of:
        0.03195616 = product of:
          0.047934234 = sum of:
            0.02360563 = weight(_text_:c in 1447) [ClassicSimilarity], result of:
              0.02360563 = score(doc=1447,freq=2.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.1524436 = fieldWeight in 1447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1447)
            0.024328604 = weight(_text_:22 in 1447) [ClassicSimilarity], result of:
              0.024328604 = score(doc=1447,freq=2.0), product of:
                0.15720168 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044891298 = queryNorm
                0.15476047 = fieldWeight in 1447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1447)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The BAER Web Resources Group was charged in October 1999 with defining and describing the parameters of electronic resources that do not clearly belong to the categories being defined by the BAER Digital Group or the BAER Electronic Journals Group. After some difficulty identifying precisely which resources fell under the Group's charge, we finally named the following types of resources for our consideration: web sites, electronic texts, indexes, databases and abstracts, online reference resources, and networked and non-networked CD-ROMs. Electronic resources are a vast and growing collection that touch nearly every department within the Library. It is unrealistic to think one department can effectively administer all aspects of the collection. The Group then began to focus on the concern of bibliographic access to these varied resources, and to define parameters for handling or processing them within the Library. Some key elements became evident as the work progressed. * Selection process of resources to be acquired for the collection * Duplication of effort * Use of CORC * Resource Finder design * Maintenance of Resource Finder * CD-ROMs not networked * Communications * Voyager search limitations. An unexpected collaboration with the Web Development Committee on the Resource Finder helped to steer the Group to more detailed descriptions of bibliographic access. This collaboration included development of data elements for the Resource Finder database, and some discussions on Library staff processing of the resources. The Web Resources Group invited expert testimony to help the Group broaden its view to envision public use of the resources and discuss concerns related to technical services processing. The first testimony came from members of the Resource Finder Committee. Some background information on the Web Development Resource Finder Committee was shared. The second testimony was from librarians who select electronic texts. Three main themes were addressed: accessing CD-ROMs; the issue of including non-networked CD-ROMs in the Resource Finder; and, some special concerns about electronic texts. The third testimony came from librarians who select indexes and abstracts and also provide Reference services. Appendices to this report include minutes of the meetings with the experts (Appendix A), a list of proposed data elements to be used in the Resource Finder (Appendix B), and recommendations made to the Resource Finder Committee (Appendix C). Below are summaries of the key elements.
    Date
    21. 4.2002 10:22:31
  2. Lagoze, C.; Lynch, C.A.; Daniel, R. Jr.: ¬The Warwick Framework : a container architecture for aggregating sets of metadata, 24.6.1996 (1996) 0.01
    0.01376995 = product of:
      0.0275399 = sum of:
        0.0275399 = product of:
          0.0826197 = sum of:
            0.0826197 = weight(_text_:c in 5972) [ClassicSimilarity], result of:
              0.0826197 = score(doc=5972,freq=2.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.5335526 = fieldWeight in 5972, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5972)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  3. Werner, C.: Global publishing and national heritage : selection of Internet resources for national bibliographies (2001) 0.01
    0.01376995 = product of:
      0.0275399 = sum of:
        0.0275399 = product of:
          0.0826197 = sum of:
            0.0826197 = weight(_text_:c in 6912) [ClassicSimilarity], result of:
              0.0826197 = score(doc=6912,freq=2.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.5335526 = fieldWeight in 6912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6912)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  4. Atkins, H.; Lyons, C.; Ratner, H.; Risher, C.; Shillum, C.; Sidman, D.; Stevens, A.: Reference linking with DOIs : a case study (2000) 0.01
    0.010221538 = product of:
      0.020443076 = sum of:
        0.020443076 = product of:
          0.061329227 = sum of:
            0.061329227 = weight(_text_:c in 1229) [ClassicSimilarity], result of:
              0.061329227 = score(doc=1229,freq=6.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.3960601 = fieldWeight in 1229, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1229)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  5. Ding, J.: Can data die? : why one of the Internet's oldest images lives on wirhout its subjects's consent (2021) 0.01
    0.0072013303 = product of:
      0.014402661 = sum of:
        0.014402661 = product of:
          0.04320798 = sum of:
            0.04320798 = weight(_text_:i in 423) [ClassicSimilarity], result of:
              0.04320798 = score(doc=423,freq=12.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.25518858 = fieldWeight in 423, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=423)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    In 2021, sharing content is easier than ever. Our lingua franca is visual: memes, infographics, TikToks. Our references cross borders and platforms, shared and remixed a hundred different ways in minutes. Digital culture is collective by default and has us together all around the world. But as the internet reaches its "dirty 30s," what happens when pieces of digital culture that have been saved, screenshotted, and reposted for years need to retire? Let's dig into the story of one of these artifacts: The Lenna image. The Lenna image may be relatively unknown in pop culture today, but in the engineering world, it remains an icon. I first encountered the image in an undergrad class, then grad school, and then all over the sites and software I use every day as a tech worker like Github, OpenCV, Stack Overflow, and Quora. To understand where the image is today, you have to understand how it got here. So, I decided to scrape Google scholar, search, and reverse image search results to track down thousands of instances of the image across the internet (see more in the methods section).
    In the 21st century, the image has remained a common sight in classrooms and on TV, including a feature on Silicon Valley in 2014. Pushback towards the use of the image also grew in the 2010s leading up to 2019, when the Losing Lena documentary was released. Forsén shares her side of the story and asks for her image to be retired: "I retired from modelling a long time ago. It's time I retired from tech, too. We can make a simple change today that creates a lasting change for tomorrow. Let's commit to losing me." After the film's release, many of my female colleagues shared stories about their own encounters with the image throughout their careers. When one of the only women this well referenced, respected, and remembered in your field is known for a nude photo that was taken of her and is now used without her consent, it inevitably shapes the perception of the position of women in tech and the value of our contributions. The film called on the engineering community to stop their spread of the image and use alternatives instead. This led to efforts to remove the image from textbooks and production code and a slow, but noticeable decline in the image's use for research.
    Content
    "Having known Lenna for almost a decade, I have struggled to understand what the story of the image means for what tech culture is and what it is becoming. To me, the crux of the Lenna story is how little power we have over our data and how it is used and abused. This threat seems disproportionately higher for women who are often overrepresented in internet content, but underrepresented in internet company leadership and decision making. Given this reality, engineering and product decisions will continue to consciously (and unconsciously) exclude our needs and concerns. While social norms are changing towards non-consensual data collection and data exploitation, digital norms seem to be moving in the opposite direction. Advancements in machine learning algorithms and data storage capabilities are only making data misuse easier. Whether the outcome is revenge porn or targeted ads, surveillance or discriminatory AI, if we want a world where our data can retire when it's outlived its time, or when it's directly harming our lives, we must create the tools and policies that empower data subjects to have a say in what happens to their data. including allowing their data to die."
  6. Ginsparg, P.: Winners and losers in the global research village (1998) 0.01
    0.0070558335 = product of:
      0.014111667 = sum of:
        0.014111667 = product of:
          0.042335 = sum of:
            0.042335 = weight(_text_:i in 1146) [ClassicSimilarity], result of:
              0.042335 = score(doc=1146,freq=2.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.25003272 = fieldWeight in 1146, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1146)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    I describe a set of automated archives for electronic communication of research information in many fields of physics, and some related and unrelated disciplines, starting from 1991. These archives now serve over 35.000 users worldwide from over 70 countries, and process more than 70.000 electronic transaction per day. In some fields of physics, they have already supplanted traditional research journals as conveyors of both topical and archival research information
  7. Hitchcock, S.; Bergmark, D.; Brody, T.; Gutteridge, C.; Carr, L.; Hall, W.; Lagoze, C.; Harnad, S.: Open citation linking : the way forward (2002) 0.01
    0.0069548762 = product of:
      0.0139097525 = sum of:
        0.0139097525 = product of:
          0.041729257 = sum of:
            0.041729257 = weight(_text_:c in 1207) [ClassicSimilarity], result of:
              0.041729257 = score(doc=1207,freq=4.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.2694848 = fieldWeight in 1207, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1207)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  8. Dodge, M.: What does the Internet look like, Jellyfish perhaps? : Exploring a visualization of the Internet by Young Hyun of CAIDA (2001) 0.01
    0.0065738847 = product of:
      0.0131477695 = sum of:
        0.0131477695 = product of:
          0.039443307 = sum of:
            0.039443307 = weight(_text_:i in 1554) [ClassicSimilarity], result of:
              0.039443307 = score(doc=1554,freq=10.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.23295423 = fieldWeight in 1554, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1554)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    "The Internet is often likened to an organic entity and this analogy seems particularly appropriate in the light of some striking new visualizations of the complex mesh of Internet pathways. The images are results of a new graph visualization tool, code-named Walrus, being developed by researcher, Young Hyun, at the Cooperative Association for Internet Data Analysis (CAIDA) [1]. Although Walrus is still in early days of development, I think these preliminary results are some of the most intriguing and evocative images of the Internet's structure that we have seen in last year or two. A few years back I spent an enjoyable afternoon at the Monterey Bay Aquarium and I particularly remember a stunning exhibit of jellyfish, which were illuminated with UV light to show their incredibly delicate organic structures, gently pulsing in tanks of inky black water. Jellyfish are some of the strangest, alien, and yet most beautiful, living creatures [2]. Having looked at the Walrus images I began to wonder, perhaps the backbone networks of the Internet look like jellyfish? The image above is a screengrab of a Walrus visualization of a huge graph. The graph data in this particular example depicts Internet topology, as measured by CAIDA's skitter monitor [3] based in London, showing 535,000-odd Internet nodes and over 600,000 links. The nodes, represented by the yellow dots, are a large sample of computers from across the whole range of Internet addresses. Walrus is an interactive visualization tool that allows the analyst to view massive graphs from any position. The graph is projected inside a 3D sphere using a special kind of space based hyperbolic geometry. This is a non-Euclidean space, which has useful distorting properties of making elements at the center of the display much larger than those on the periphery. You interact with the graph in Walrus by selecting a node of interest, which is smoothly moved into the center of the display, and that region of the graph becomes greatly enlarged, enabling you to focus on the fine detail. Yet the rest of the graph remains visible, providing valuable context of the overall structure. (There are some animations available on the website showing Walrus graphs being moved, which give some sense of what this is like.) Hyperbolic space projection is commonly know as "focus+context" in the field of information visualization and has been used to display all kinds of data that can be represented as large graphs in either two and three dimensions [4]. It can be thought of as a moveable fish-eye lens. The Walrus visualization tool draws much from the hyperbolic research by Tamara Munzner [5] as part of her PhD at Stanford. (Map of the Month examined some of Munzner's work from 1996 in an earlier article, Internet Arcs Around The Globe.) Walrus is being developed as a general-purpose visualization tool able to cope with massive directed graphs, in the order of a million nodes. Providing useful and interactively useable visualization of such large volumes of graph data is a tough challenge and is particularly apposite to the task of mapping of Internet backbone infrastructures. In a recent email Map of the Month asked Walrus developer Young Hyun what had been the hardest part of the project thus far. "The greatest difficulty was in determining precisely what Walrus should be about," said Hyun. Crucially "... we had to face the question of what it means to visualize a large graph. It would defeat the aim of a visualization to overload a user with the large volume of data that is likely to be associated with a large graph." I think the preliminary results available show that Walrus is heading in right direction tackling these challenges.
  9. ¬Third International World Wide Web Conference, Darmstadt 1995 : [Inhaltsverzeichnis] (1995) 0.01
    0.0059014075 = product of:
      0.011802815 = sum of:
        0.011802815 = product of:
          0.035408445 = sum of:
            0.035408445 = weight(_text_:c in 3458) [ClassicSimilarity], result of:
              0.035408445 = score(doc=3458,freq=2.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.22866541 = fieldWeight in 3458, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3458)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    ANDREW, K. u. F. KAPPE: Serving information to the Web with Hyper-G; BARBIERI, K., H.M. DOERR u. D. DWYER: Creating a virtual classroom for interactive education on the Web; CAMPBELL, J.K., S.B. JONES, N.M. STEPHENS u. S. HURLEY: Constructing educational courseware using NCSA Mosaic and the World Wide Web; CATLEDGE, L.L. u. J.E. PITKOW: Characterizing browsing strategies in the World-Wide Web; CLAUSNITZER, A. u. P. VOGEL: A WWW interface to the OMNIS/Myriad literature retrieval engine; FISCHER, R. u. L. PERROCHON: IDLE: Unified W3-access to interactive information servers; FOLEY, J.D.: Visualizing the World-Wide Web with the navigational view builder; FRANKLIN, S.D. u. B. IBRAHIM: Advanced educational uses of the World-Wide Web; FUHR, N., U. PFEIFER u. T. HUYNH: Searching structured documents with the enhanced retrieval functionality of free WAIS-sf and SFgate; FIORITO, M., J. OKSANEN u. D.R. IOIVANE: An educational environment using WWW; KENT, R.E. u. C. NEUSS: Conceptual analysis of resource meta-information; SHELDON, M.A. u. R. WEISS: Discover: a resource discovery system based on content routing; WINOGRAD, T.: Beyond browsing: shared comments, SOAPs, Trails, and On-line communities
  10. Hyning, V. Van; Lintott, C.; Blickhan, S.; Trouille, L.: Transforming libraries and archives through crowdsourcing (2017) 0.01
    0.0059014075 = product of:
      0.011802815 = sum of:
        0.011802815 = product of:
          0.035408445 = sum of:
            0.035408445 = weight(_text_:c in 2526) [ClassicSimilarity], result of:
              0.035408445 = score(doc=2526,freq=2.0), product of:
                0.15484828 = queryWeight, product of:
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.044891298 = queryNorm
                0.22866541 = fieldWeight in 2526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.4494052 = idf(docFreq=3817, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2526)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  11. EEVL - Enhanced and Evaluated Virtual Library (o.J.) 0.01
    0.0058798613 = product of:
      0.011759723 = sum of:
        0.011759723 = product of:
          0.035279166 = sum of:
            0.035279166 = weight(_text_:i in 2260) [ClassicSimilarity], result of:
              0.035279166 = score(doc=2260,freq=2.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.20836058 = fieldWeight in 2260, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2260)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Type
    i
  12. Veelen, I. van: ¬The truth according to Wikipedia (2008) 0.00
    0.0047038887 = product of:
      0.009407777 = sum of:
        0.009407777 = product of:
          0.028223332 = sum of:
            0.028223332 = weight(_text_:i in 2139) [ClassicSimilarity], result of:
              0.028223332 = score(doc=2139,freq=2.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.16668847 = fieldWeight in 2139, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2139)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  13. Kubiszewski, I.; Cleveland, C.J.: ¬The Encyclopedia of Earth (2007) 0.00
    0.004115903 = product of:
      0.008231806 = sum of:
        0.008231806 = product of:
          0.024695417 = sum of:
            0.024695417 = weight(_text_:i in 1170) [ClassicSimilarity], result of:
              0.024695417 = score(doc=1170,freq=2.0), product of:
                0.16931784 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.044891298 = queryNorm
                0.14585242 = fieldWeight in 1170, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1170)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)