Search (1055 results, page 2 of 53)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  1. Social information retrieval systems : emerging technologies and applications for searching the Web effectively (2008) 0.13
    0.13101415 = product of:
      0.17468554 = sum of:
        0.0735883 = weight(_text_:web in 4127) [ClassicSimilarity], result of:
          0.0735883 = score(doc=4127,freq=20.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.45608947 = fieldWeight in 4127, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4127)
        0.06983395 = weight(_text_:search in 4127) [ClassicSimilarity], result of:
          0.06983395 = score(doc=4127,freq=14.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4063998 = fieldWeight in 4127, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4127)
        0.031263296 = product of:
          0.06252659 = sum of:
            0.06252659 = weight(_text_:engine in 4127) [ClassicSimilarity], result of:
              0.06252659 = score(doc=4127,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23641664 = fieldWeight in 4127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4127)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Content
    Inhalt Collaborating to search effectively in different searcher modes through cues and specialty search / Naresh Kumar Agarwal and Danny C.C. Poo -- Collaborative querying using a hybrid content and results-based approach / Chandrani Sinha Ray ... [et al.] -- Collaborative classification for group-oriented organization of search results / Keiichi Nakata and Amrish Singh -- A case study of use-centered descriptions : archival descriptions of what can be done with a collection / Richard Butterworth -- Metadata for social recommendations : storing, sharing, and reusing evaluations of learning resources / Riina Vuorikari, Nikos Manouselis, and Erik Duval -- Social network models for enhancing reference-based search engine rankings / Nikolaos Korfiatis ... [et al.] -- From PageRank to social rank : authority-based retrieval in social information spaces / Sebastian Marius Kirsch ... [et al.] -- Adaptive peer-to-peer social networks for distributed content-based Web search / Le-Shin Wu ... [et al.] -- The ethics of social information retrieval / Brendan Luyt and Chu Keong Lee -- The social context of knowledge / Daniel Memmi -- Social information seeking in digital libraries / George Buchanan and Annika Hinze -- Relevant intra-actions in networked environments / Theresa Dirndorfer Anderson -- Publication and citation analysis as a tool for information retrieval / Ronald Rousseau -- Personalized information retrieval in a semantic-based learning environment / Antonella Carbonaro and Rodolfo Ferrini -- Multi-agent tourism system (MATS) / Soe Yu Maw and Myo-Myo Naing -- Hybrid recommendation systems : a case study on the movies domain / Konstantinos Markellos ... [et al.].
    LCSH
    Web search engines
    World Wide Web / Subject access
    RSWK
    World Wide Web 2.0
    Information Retrieval / World Wide Web / Suchmaschine
    Subject
    Web search engines
    World Wide Web / Subject access
    World Wide Web 2.0
    Information Retrieval / World Wide Web / Suchmaschine
  2. Jansen, B.J.; Resnick, M.: ¬An examination of searcher's perceptions of nonsponsored and sponsored links during ecommerce Web searching (2006) 0.13
    0.12988316 = product of:
      0.17317754 = sum of:
        0.07125156 = weight(_text_:web in 221) [ClassicSimilarity], result of:
          0.07125156 = score(doc=221,freq=12.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.4416067 = fieldWeight in 221, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
        0.046659768 = weight(_text_:search in 221) [ClassicSimilarity], result of:
          0.046659768 = score(doc=221,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 221, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
        0.05526622 = product of:
          0.11053244 = sum of:
            0.11053244 = weight(_text_:engine in 221) [ClassicSimilarity], result of:
              0.11053244 = score(doc=221,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41792953 = fieldWeight in 221, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=221)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    In this article, we report results of an investigation into the effect of sponsored links on ecommerce information seeking on the Web. In this research, 56 participants each engaged in six ecommerce Web searching tasks. We extracted these tasks from the transaction log of a Web search engine, so they represent actual ecommerce searching information needs. Using 60 organic and 30 sponsored Web links, the quality of the Web search engine results was controlled by switching nonsponsored and sponsored links on half of the tasks for each participant. This allowed for investigating the bias toward sponsored links while controlling for quality of content. The study also investigated the relationship between searching self-efficacy, searching experience, types of ecommerce information needs, and the order of links on the viewing of sponsored links. Data included 2,453 interactions with links from result pages and 961 utterances evaluating these links. The results of the study indicate that there is a strong preference for nonsponsored links, with searchers viewing these results first more than 82% of the time. Searching self-efficacy and experience does not increase the likelihood of viewing sponsored links, and the order of the result listing does not appear to affect searcher evaluation of sponsored links. The implications for sponsored links as a long-term business model are discussed.
  3. Rogers, R.: Digital methods (2013) 0.13
    0.12834272 = product of:
      0.17112362 = sum of:
        0.08707084 = weight(_text_:web in 2354) [ClassicSimilarity], result of:
          0.08707084 = score(doc=2354,freq=28.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5396523 = fieldWeight in 2354, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.052789498 = weight(_text_:search in 2354) [ClassicSimilarity], result of:
          0.052789498 = score(doc=2354,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 2354, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.031263296 = product of:
          0.06252659 = sum of:
            0.06252659 = weight(_text_:engine in 2354) [ClassicSimilarity], result of:
              0.06252659 = score(doc=2354,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23641664 = fieldWeight in 2354, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2354)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    In Digital Methods, Richard Rogers proposes a methodological outlook for social and cultural scholarly research on the Web that seeks to move Internet research beyond the study of online culture. It is not a toolkit for Internet research, or operating instructions for a software package; it deals with broader questions. How can we study social media to learn something about society rather than about social media use? How can hyperlinks reveal not just the value of a Web site but the politics of association? Rogers proposes repurposing Web-native techniques for research into cultural change and societal conditions. We can learn to reapply such "methods of the medium" as crawling and crowd sourcing, PageRank and similar algorithms, tag clouds and other visualizations; we can learn how they handle hits, likes, tags, date stamps, and other Web-native objects. By "thinking along" with devices and the objects they handle, digital research methods can follow the evolving methods of the medium. Rogers uses this new methodological outlook to examine the findings of inquiries into 9/11 search results, the recognition of climate change skeptics by climate-change-related Web sites, the events surrounding the Srebrenica massacre according to Dutch, Serbian, Bosnian, and Croatian Wikipedias, presidential candidates' social media "friends," and the censorship of the Iranian Web. With Digital Methods, Rogers introduces a new vision and method for Internet research and at the same time applies them to the Web's objects of study, from tiny particles (hyperlinks) to large masses (social media).
    Content
    The end of the virtual : digital methods -- The link and the politics of Web space -- The website as archived object -- Googlization and the inculpable engine -- Search as research -- National Web studies -- Social media and post-demographics -- Wikipedia as cultural reference -- After cyberspace : big data, small data.
    LCSH
    Web search engines
    World Wide Web / Research
    RSWK
    Internet / Recherche / World Wide Web 2.0
    Subject
    Internet / Recherche / World Wide Web 2.0
    Web search engines
    World Wide Web / Research
  4. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.13
    0.12791318 = product of:
      0.17055091 = sum of:
        0.029088326 = weight(_text_:web in 4626) [ClassicSimilarity], result of:
          0.029088326 = score(doc=4626,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 4626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
        0.07377557 = weight(_text_:search in 4626) [ClassicSimilarity], result of:
          0.07377557 = score(doc=4626,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4293381 = fieldWeight in 4626, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
        0.06768702 = product of:
          0.13537404 = sum of:
            0.13537404 = weight(_text_:engine in 4626) [ClassicSimilarity], result of:
              0.13537404 = score(doc=4626,freq=6.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.51185703 = fieldWeight in 4626, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4626)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The primary webometric method for estimating the online impact of an organization is to count links to its website. Link counts have been available from commercial search engines for over a decade but this was set to end by early 2012 and so a replacement is needed. This article compares link counts to two alternative methods: URL citations and organization title mentions. New variations of these methods are also introduced. The three methods are compared against each other using Yahoo!. Two of the three methods (URL citations and organization title mentions) are also compared against each other using Bing. Evidence from a case study of 131 UK universities and 49 US Library and Information Science (LIS) departments suggests that Bing's Hit Count Estimates (HCEs) for popular title searches are not useful for webometric research but that Yahoo!'s HCEs for all three types of search and Bing's URL citation HCEs seem to be consistent. For exact URL counts the results of all three methods in Yahoo! and both methods in Bing are also consistent. Four types of accuracy factors are also introduced and defined: search engine coverage, search engine retrieval variation, search engine retrieval anomalies, and query polysemy.
  5. Vaughan, L.; Shaw, D.: Web citation data for impact assessment : a comparison of four science disciplines (2005) 0.12
    0.12304345 = product of:
      0.16405793 = sum of:
        0.09198537 = weight(_text_:web in 3880) [ClassicSimilarity], result of:
          0.09198537 = score(doc=3880,freq=20.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5701118 = fieldWeight in 3880, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3880)
        0.032993436 = weight(_text_:search in 3880) [ClassicSimilarity], result of:
          0.032993436 = score(doc=3880,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 3880, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3880)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 3880) [ClassicSimilarity], result of:
              0.07815824 = score(doc=3880,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 3880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3880)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The number and type of Web citations to journal articles in four areas of science are examined: biology, genetics, medicine, and multidisciplinary sciences. For a sample of 5,972 articles published in 114 journals, the median Web citation counts per journal article range from 6.2 in medicine to 10.4 in genetics. About 30% of Web citations in each area indicate intellectual impact (citations from articles or class readings, in contrast to citations from bibliographic services or the author's or journal's home page). Journals receiving more Web citations also have higher percentages of citations indicating intellectual impact. There is significant correlation between the number of citations reported in the databases from the Institute for Scientific Information (ISI, now Thomson Scientific) and the number of citations retrieved using the Google search engine (Web citations). The correlation is much weaker for journals published outside the United Kingdom or United States and for multidisciplinary journals. Web citation numbers are higher than ISI citation counts, suggesting that Web searches might be conducted for an earlier or a more fine-grained assessment of an article's impact. The Web-evident impact of non-UK/USA publications might provide a balance to the geographic or cultural biases observed in ISI's data, although the stability of Web citation counts is debatable.
  6. Huang, C.-K.; Chien, L.-F.; Oyang, Y.-J.: Relevant term suggestion in interactive Web search based on contextual information in query session logs (2003) 0.12
    0.12242785 = product of:
      0.16323714 = sum of:
        0.050382458 = weight(_text_:web in 1612) [ClassicSimilarity], result of:
          0.050382458 = score(doc=1612,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 1612, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1612)
        0.07377557 = weight(_text_:search in 1612) [ClassicSimilarity], result of:
          0.07377557 = score(doc=1612,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4293381 = fieldWeight in 1612, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1612)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 1612) [ClassicSimilarity], result of:
              0.07815824 = score(doc=1612,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 1612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1612)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This paper proposes an effective term suggestion approach to interactive Web search. Conventional approaches to making term suggestions involve extracting co-occurring keyterms from highly ranked retrieved documents. Such approaches must deal with term extraction difficulties and interference from irrelevant documents, and, more importantly, have difficulty extracting terms that are conceptually related but do not frequently co-occur in documents. In this paper, we present a new, effective log-based approach to relevant term extraction and term suggestion. Using this approach, the relevant terms suggested for a user query are those that cooccur in similar query sessions from search engine logs, rather than in the retrieved documents. In addition, the suggested terms in each interactive search step can be organized according to its relevance to the entire query session, rather than to the most recent single query as in conventional approaches. The proposed approach was tested using a proxy server log containing about two million query transactions submitted to search engines in Taiwan. The obtained experimental results show that the proposed approach can provide organized and highly relevant terms, and can exploit the contextual information in a user's query session to make more effective suggestions.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"
  7. Yang, C.C.; Chung, A.: ¬A personal agent for Chinese financial news on the Web (2002) 0.12
    0.12095168 = product of:
      0.1612689 = sum of:
        0.06504348 = weight(_text_:web in 205) [ClassicSimilarity], result of:
          0.06504348 = score(doc=205,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.40312994 = fieldWeight in 205, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=205)
        0.057146307 = weight(_text_:search in 205) [ClassicSimilarity], result of:
          0.057146307 = score(doc=205,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.33256388 = fieldWeight in 205, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=205)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 205) [ClassicSimilarity], result of:
              0.07815824 = score(doc=205,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=205)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    As the Web has become a major channel of information dissemination, many newspapers expand their services by providing electronic versions of news information on the Web. However, most investors find it difficult to search for the financial information of interest from the huge Web information space-information overloading problem. In this article, we present a personal agent that utilizes user profiles and user relevance feedback to search for the Chinese Web financial news articles on behalf of users. A Chinese indexing component is developed to index the continuously fetched Chinese financial news articles. User profiles capture the basic knowledge of user preferences based on the sources of news articles, the regions of the news reported, categories of industries related, the listed companies, and user-specified keywords. User feedback captures the semantics of the user rated news articles. The search engine ranks the top 20 news articles that users are most interested in and report to the user daily or on demand. Experiments are conducted to measure the performance of the agents based on the inputs from user profiles and user feedback. It shows that simply using the user profiles does not increase the precision of the retrieval. However, user relevance feedback helps to increase the performance of the retrieval as the user interact with the system until it reaches the optimal performance. Combining both user profiles and user relevance feedback produces the best performance
  8. Sanchiza, M.; Chinb, J.; Chevaliera, A.; Fuc, W.T.; Amadieua, F.; Hed, J.: Searching for information on the web : impact of cognitive aging, prior domain knowledge and complexity of the search problems (2017) 0.12
    0.12073888 = product of:
      0.16098517 = sum of:
        0.03490599 = weight(_text_:web in 3294) [ClassicSimilarity], result of:
          0.03490599 = score(doc=3294,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 3294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3294)
        0.07918424 = weight(_text_:search in 3294) [ClassicSimilarity], result of:
          0.07918424 = score(doc=3294,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.460814 = fieldWeight in 3294, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3294)
        0.04689494 = product of:
          0.09378988 = sum of:
            0.09378988 = weight(_text_:engine in 3294) [ClassicSimilarity], result of:
              0.09378988 = score(doc=3294,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.35462496 = fieldWeight in 3294, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3294)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This study focuses on the impact of age, prior domain knowledge and cognitive abilities on performance, query production and navigation strategies during information searching. Twenty older adults and nineteen young adults had to answer 12 information search problems of varying nature within two domain knowledge: health and manga. In each domain, participants had to perform two simple fact-finding problems (keywords provided and answer directly accessible on the search engine results page), two difficult fact-finding problems (keywords had to be inferred) and two open-ended information search problems (multiple answers possible and navigation necessary). Results showed that prior domain knowledge helped older adults improve navigation (i.e. reduced the number of webpages visited and thus decreased the feeling of disorientation), query production and reformulation (i.e. they formulated semantically more specific queries, and they inferred a greater number of new keywords).
  9. Rasmussen, E.M.: Indexing and retrieval for the Web (2002) 0.12
    0.12008574 = product of:
      0.16011432 = sum of:
        0.07618698 = weight(_text_:web in 4285) [ClassicSimilarity], result of:
          0.07618698 = score(doc=4285,freq=28.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.47219574 = fieldWeight in 4285, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
        0.056571957 = weight(_text_:search in 4285) [ClassicSimilarity], result of:
          0.056571957 = score(doc=4285,freq=12.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.32922143 = fieldWeight in 4285, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
        0.027355384 = product of:
          0.05471077 = sum of:
            0.05471077 = weight(_text_:engine in 4285) [ClassicSimilarity], result of:
              0.05471077 = score(doc=4285,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.20686457 = fieldWeight in 4285, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4285)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The introduction and growth of the World Wide Web (WWW, or Web) have resulted in a profound change in the way individuals and organizations access information. In terms of volume, nature, and accessibility, the characteristics of electronic information are significantly different from those of even five or six years ago. Control of, and access to, this flood of information rely heavily an automated techniques for indexing and retrieval. According to Gudivada, Raghavan, Grosky, and Kasanagottu (1997, p. 58), "The ability to search and retrieve information from the Web efficiently and effectively is an enabling technology for realizing its full potential." Almost 93 percent of those surveyed consider the Web an "indispensable" Internet technology, second only to e-mail (Graphie, Visualization & Usability Center, 1998). Although there are other ways of locating information an the Web (browsing or following directory structures), 85 percent of users identify Web pages by means of a search engine (Graphie, Visualization & Usability Center, 1998). A more recent study conducted by the Stanford Institute for the Quantitative Study of Society confirms the finding that searching for information is second only to e-mail as an Internet activity (Nie & Ebring, 2000, online). In fact, Nie and Ebring conclude, "... the Internet today is a giant public library with a decidedly commercial tilt. The most widespread use of the Internet today is as an information search utility for products, travel, hobbies, and general information. Virtually all users interviewed responded that they engaged in one or more of these information gathering activities."
    Techniques for automated indexing and information retrieval (IR) have been developed, tested, and refined over the past 40 years, and are well documented (see, for example, Agosti & Smeaton, 1996; BaezaYates & Ribeiro-Neto, 1999a; Frakes & Baeza-Yates, 1992; Korfhage, 1997; Salton, 1989; Witten, Moffat, & Bell, 1999). With the introduction of the Web, and the capability to index and retrieve via search engines, these techniques have been extended to a new environment. They have been adopted, altered, and in some Gases extended to include new methods. "In short, search engines are indispensable for searching the Web, they employ a variety of relatively advanced IR techniques, and there are some peculiar aspects of search engines that make searching the Web different than more conventional information retrieval" (Gordon & Pathak, 1999, p. 145). The environment for information retrieval an the World Wide Web differs from that of "conventional" information retrieval in a number of fundamental ways. The collection is very large and changes continuously, with pages being added, deleted, and altered. Wide variability between the size, structure, focus, quality, and usefulness of documents makes Web documents much more heterogeneous than a typical electronic document collection. The wide variety of document types includes images, video, audio, and scripts, as well as many different document languages. Duplication of documents and sites is common. Documents are interconnected through networks of hyperlinks. Because of the size and dynamic nature of the Web, preprocessing all documents requires considerable resources and is often not feasible, certainly not an the frequent basis required to ensure currency. Query length is usually much shorter than in other environments-only a few words-and user behavior differs from that in other environments. These differences make the Web a novel environment for information retrieval (Baeza-Yates & Ribeiro-Neto, 1999b; Bharat & Henzinger, 1998; Huang, 2000).
  10. Kellar, M.; Watters, C.; Shepherd, M.: ¬A field study characterizing Web-based information seeking tasks (2007) 0.12
    0.11576007 = product of:
      0.15434676 = sum of:
        0.08227421 = weight(_text_:web in 335) [ClassicSimilarity], result of:
          0.08227421 = score(doc=335,freq=16.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5099235 = fieldWeight in 335, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=335)
        0.032993436 = weight(_text_:search in 335) [ClassicSimilarity], result of:
          0.032993436 = score(doc=335,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=335)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 335) [ClassicSimilarity], result of:
              0.07815824 = score(doc=335,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=335)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Previous studies have examined various aspects of user behavior on the Web, including general information-seeking patterns, search engine use, and revisitation habits. Little research has been conducted to study how users navigate and interact with their Web browser across different information-seeking tasks. We have conducted a field study of 21 participants, in which we logged detailed Web usage and asked participants to provide task categorizations of their Web usage based on the following categories: Fact Finding, Information Gathering, Browsing, and Transactions. We used implicit measures logged during each task session to provide usage measures such as dwell time, number of pages viewed, and the use of specific browser navigation mechanisms. We also report on differences in how participants interacted with their Web browser across the range of information-seeking tasks. Within each type of task, we found several distinguishing characteristics. In particular, Information Gathering tasks were the most complex; participants spent more time completing this task, viewed more pages, and used the Web browser functions most heavily during this task. The results of this analysis have been used to provide implications for future support of information seeking on the Web as well as direction for future research in this area.
  11. Yang, C.C.; Liu, N.: Web site topic-hierarchy generation based on link structure (2009) 0.11
    0.113003 = product of:
      0.15067066 = sum of:
        0.08726498 = weight(_text_:web in 2738) [ClassicSimilarity], result of:
          0.08726498 = score(doc=2738,freq=18.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5408555 = fieldWeight in 2738, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2738)
        0.046659768 = weight(_text_:search in 2738) [ClassicSimilarity], result of:
          0.046659768 = score(doc=2738,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 2738, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2738)
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 2738) [ClassicSimilarity], result of:
              0.03349182 = score(doc=2738,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 2738, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Navigating through hyperlinks within a Web site to look for information from one of its Web pages without the support of a site map can be inefficient and ineffective. Although the content of a Web site is usually organized with an inherent structure like a topic hierarchy, which is a directed tree rooted at a Web site's homepage whose vertices and edges correspond to Web pages and hyperlinks, such a topic hierarchy is not always available to the user. In this work, we studied the problem of automatic generation of Web sites' topic hierarchies. We modeled a Web site's link structure as a weighted directed graph and proposed methods for estimating edge weights based on eight types of features and three learning algorithms, namely decision trees, naïve Bayes classifiers, and logistic regression. Three graph algorithms, namely breadth-first search, shortest-path search, and directed minimum-spanning tree, were adapted to generate the topic hierarchy based on the graph model. We have tested the model and algorithms on real Web sites. It is found that the directed minimum-spanning tree algorithm with the decision tree as the weight learning algorithm achieves the highest performance with an average accuracy of 91.9%.
    Date
    22. 3.2009 12:51:47
  12. Chen, Z.; Wenyin, L.; Zhang, F.; Li, M.; Zhang, H.: Web mining for Web image retrieval (2001) 0.11
    0.11177478 = product of:
      0.14903304 = sum of:
        0.07696048 = weight(_text_:web in 6521) [ClassicSimilarity], result of:
          0.07696048 = score(doc=6521,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.47698978 = fieldWeight in 6521, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6521)
        0.032993436 = weight(_text_:search in 6521) [ClassicSimilarity], result of:
          0.032993436 = score(doc=6521,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 6521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6521)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 6521) [ClassicSimilarity], result of:
              0.07815824 = score(doc=6521,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 6521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6521)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The popularity of digital images is rapidly increasing due to improving digital imaging technologies and convenient availability facilitated by the Internet. However, how to find user-intended images from the Internet is nontrivial. The main reason is that the Web images are usually not annotated using semantic descriptors. In this article, we present an effective approach to and a prototype system for image retrieval from the Internet using Web mining. The system can also serve as a Web image search engine. One of the key ideas in the approach is to extract the text information on the Web pages to semantically describe the images. The text description is then combined with other low-level image features in the image similarity assessment. Another main contribution of this work is that we apply data mining on the log of users' feedback to improve image retrieval performance in three aspects. First, the accuracy of the document space model of image representation obtained from the Web pages is improved by removing clutter and irrelevant text information. Second, to construct the user space model of users' representation of images, which is then combined with the document space model to eliminate mismatch between the page author's expression and the user's understanding and expectation. Third, to discover the relationship between low-level and high-level features, which is extremely useful for assigning the low-level features' weights in similarity assessment
  13. Lau, A.Y.S.; Coiera, E.W.: ¬A Bayesian model that predicts the impact of Web searching on decision making (2006) 0.11
    0.10995591 = product of:
      0.14660788 = sum of:
        0.050382458 = weight(_text_:web in 5060) [ClassicSimilarity], result of:
          0.050382458 = score(doc=5060,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 5060, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5060)
        0.057146307 = weight(_text_:search in 5060) [ClassicSimilarity], result of:
          0.057146307 = score(doc=5060,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.33256388 = fieldWeight in 5060, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5060)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 5060) [ClassicSimilarity], result of:
              0.07815824 = score(doc=5060,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 5060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5060)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This study aimed to develop a model for predicting the impact of information access using Web searches, on human decision making. Models were constructed using a database of search behaviors and decisions of 75 clinicians, who answered questions about eight scenarios within 80 minutes in a controlled setting at a university computer laboratory. Bayesian models were developed with and without bias factors to account for anchoring, primacy, recency, exposure, and reinforcement decision biases. Prior probabilities were estimated from the population prior, from a personal prior calculated from presearch answers and confidence ratings provided by the participants, from an overall measure of willingness to switch belief before and after searching, and from a willingness to switch belief calculated in each individual scenario. The optimal Bayes model predicted user answers in 73.3% (95% Cl: 68.71 to 77.35%) of cases, and incorporated participants' willingness to switch belief before and after searching for each scenario, as well as the decision biases they encounter during the search journey. In most cases, it is possible to predict the impact of a sequence of documents retrieved by a Web search engine on a decision task without reference to the content or structure of the documents, but relying solely on a simple Bayesian model of belief revision.
  14. Bachiochi, D.: Usability studies and designing navigational aids for the World Wide Web (1997) 0.11
    0.109051734 = product of:
      0.14540231 = sum of:
        0.06581937 = weight(_text_:web in 2402) [ClassicSimilarity], result of:
          0.06581937 = score(doc=2402,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.4079388 = fieldWeight in 2402, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=2402)
        0.052789498 = weight(_text_:search in 2402) [ClassicSimilarity], result of:
          0.052789498 = score(doc=2402,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 2402, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=2402)
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 2402) [ClassicSimilarity], result of:
              0.053586908 = score(doc=2402,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 2402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2402)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Describes how usability testing was used to validate design recommendations WWW navigation aids. The results show a need for navigational aids that are related to the particular Website and located beneath browser buttons. Usability criteria were established that limits page changes to 4 and search times to 60 seconds for information retrieval
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
  15. Milosavljevic, M.; Oberlander, J.: Dynamic catalogues on the WWW (1998) 0.11
    0.109051734 = product of:
      0.14540231 = sum of:
        0.06581937 = weight(_text_:web in 3594) [ClassicSimilarity], result of:
          0.06581937 = score(doc=3594,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.4079388 = fieldWeight in 3594, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3594)
        0.052789498 = weight(_text_:search in 3594) [ClassicSimilarity], result of:
          0.052789498 = score(doc=3594,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 3594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=3594)
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 3594) [ClassicSimilarity], result of:
              0.053586908 = score(doc=3594,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 3594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3594)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Natural language generation techniques can be used to dynamically produce hypertext dynamic catalogues on the Web, resulting in DYNAMIC HYPERTEXT. A dynamic hypertext document can be tailored more precisely to a particular user's needs and background, thus helping the user to search more effectively. Describes the automatic generation of WWW documents and illustrates with 2 implemented systems
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  16. Green, E.; Head, A.J.: Web-based catalogs : is their design language anything to talk about? (1998) 0.11
    0.109051734 = product of:
      0.14540231 = sum of:
        0.06581937 = weight(_text_:web in 5185) [ClassicSimilarity], result of:
          0.06581937 = score(doc=5185,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.4079388 = fieldWeight in 5185, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5185)
        0.052789498 = weight(_text_:search in 5185) [ClassicSimilarity], result of:
          0.052789498 = score(doc=5185,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 5185, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=5185)
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 5185) [ClassicSimilarity], result of:
              0.053586908 = score(doc=5185,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 5185, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5185)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Stanford University's Socrates II and University of California at Berkeley's Pathfinder are 2 USA World Wide Web based online publication access catalogues under development. They differ in their design language (how an interface functionally and visually communicates to the users). Evaluates each system's interface design and their ability to communicate functionality to users: analyzes design in terms of: colour, buttons, metaphors, layout, and basic and advanced search modes. Concludes that the design languages of both systems have the right directive and have the potential to evolve
    Source
    Online. 22(1998) no.4, S.98-105
  17. Perez, E.: Industrial strength database publishing : Inmagic DB/Textworks WebPublisher (1997) 0.11
    0.10695101 = product of:
      0.21390203 = sum of:
        0.05759195 = weight(_text_:web in 679) [ClassicSimilarity], result of:
          0.05759195 = score(doc=679,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.35694647 = fieldWeight in 679, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=679)
        0.15631008 = sum of:
          0.10942154 = weight(_text_:engine in 679) [ClassicSimilarity], result of:
            0.10942154 = score(doc=679,freq=2.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.41372913 = fieldWeight in 679, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.0546875 = fieldNorm(doc=679)
          0.046888545 = weight(_text_:22 in 679) [ClassicSimilarity], result of:
            0.046888545 = score(doc=679,freq=2.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.2708308 = fieldWeight in 679, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=679)
      0.5 = coord(2/4)
    
    Abstract
    The availability of powerful indexing and database products with easy Web connections means that libraries able to gather and edit their own data are emancipated from the large vendors. The Oregon State Library staff used the Data Magician translation utility as part of a complex, but speedy, database converison project. The Oregon Index database of approximately 300.000 records was converted from a BRS database host over to the Inmagic WebPublisher system. Describes the planning and action stepts used in producing the Web accessible index database of considerable size. Participants have high ratings to effectiveness of both the translation utility and the database engine
    Date
    6. 3.1997 16:22:15
  18. Bharat, K.: SearchPad : explicit capture of search context to support Web search (2000) 0.11
    0.10604733 = product of:
      0.21209466 = sum of:
        0.08144732 = weight(_text_:web in 3432) [ClassicSimilarity], result of:
          0.08144732 = score(doc=3432,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.50479853 = fieldWeight in 3432, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=3432)
        0.13064735 = weight(_text_:search in 3432) [ClassicSimilarity], result of:
          0.13064735 = score(doc=3432,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.76030433 = fieldWeight in 3432, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.109375 = fieldNorm(doc=3432)
      0.5 = coord(2/4)
    
  19. Stacey, Alison; Stacey, Adrian: Effective information retrieval from the Internet : an advanced user's guide (2004) 0.11
    0.105790526 = product of:
      0.14105403 = sum of:
        0.057001244 = weight(_text_:web in 4497) [ClassicSimilarity], result of:
          0.057001244 = score(doc=4497,freq=12.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.35328537 = fieldWeight in 4497, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
        0.052789498 = weight(_text_:search in 4497) [ClassicSimilarity], result of:
          0.052789498 = score(doc=4497,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 4497, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
        0.031263296 = product of:
          0.06252659 = sum of:
            0.06252659 = weight(_text_:engine in 4497) [ClassicSimilarity], result of:
              0.06252659 = score(doc=4497,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23641664 = fieldWeight in 4497, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4497)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This book provides practical strategies which enable the advanced web user to locate information effectively and to form a precise evaluation of the accuracy of that information. Although the book provides a brief but thorough review of the technologies which are currently available for these purposes, most of the book concerns practical `future-proof' techniques which are independent of changes in the tools available. For example, the book covers: how to retrieve salient information quickly; how to remove or compensate for bias; and tuition of novice Internet users.
    Content
    Key Features - Importantly, the book enables readers to develop strategies which will continue to be useful despite the rapidly-evolving state of the Internet and Internet technologies - it is not about technological `tricks'. - Enables readers to be aware of and compensate for bias and errors which are ubiquitous an the Internet. - Provides contemporary information an the deficiencies in web skills of novice users as well as practical techniques for teaching such users. The Authors Dr Alison Stacey works at the Learning Resource Centre, Cambridge Regional College. Dr Adrian Stacey, formerly based at Cambridge University, is a software programmer. Readership The book is aimed at a wide range of librarians and other information professionals who need to retrieve information from the Internet efficiently, to evaluate their confidence in the information they retrieve and/or to train others to use the Internet. It is primarily aimed at intermediate to advanced users of the Internet. Contents Fundamentals of information retrieval from the Internet - why learn web searching technique; types of information requests; patterns for information retrieval; leveraging the technology: Search term choice: pinpointing information an the web - why choose queries carefully; making search terms work together; how to pick search terms; finding the 'unfindable': Blas an the Internet - importance of bias; sources of bias; usergenerated bias: selecting information with which you already agree; assessing and compensating for bias; case studies: Query reformulation and longer term strategies - how to interact with your search engine; foraging for information; long term information retrieval: using the Internet to find trends; automating searches: how to make your machine do your work: Assessing the quality of results- how to assess and ensure quality: The novice user and teaching internet skills - novice users and their problems with the web; case study: research in a college library; interpreting 'second hand' web information.
  20. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.11
    0.1051279 = product of:
      0.14017053 = sum of:
        0.07053544 = weight(_text_:web in 1319) [ClassicSimilarity], result of:
          0.07053544 = score(doc=1319,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43716836 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.046190813 = weight(_text_:search in 1319) [ClassicSimilarity], result of:
          0.046190813 = score(doc=1319,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 1319, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.023444273 = product of:
          0.046888545 = sum of:
            0.046888545 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.046888545 = score(doc=1319,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia

Years

Types

  • a 900
  • m 102
  • s 46
  • el 34
  • r 5
  • b 3
  • i 1
  • More… Less…

Subjects

Classifications