Search (25 results, page 2 of 2)

  • × language_ss:"e"
  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  • × type_ss:"el"
  1. Faceted classification of information (o.J.) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 2653) [ClassicSimilarity], result of:
              0.006079746 = score(doc=2653,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 2653, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2653)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An explanation of faceted classification meant for people working in knowledge management. An example given for a high-technology company has the fundamental categories Products, Applications, Organizations, People, Domain objects ("technologies applied in the marketplace in which the organization participates"), Events (i.e. time), and Publications.
  2. XFML Core - eXchangeable Faceted Metadata Language (2003) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 6673) [ClassicSimilarity], result of:
              0.006079746 = score(doc=6673,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 6673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6673)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The specification for XFML, a markup language designed to handle faceted classifications. Browsing the site (http://www.xfml.org/) will reveal news about XFML and links to related software and web sites. XFML is not an officially recognized Internet standard, but is the de facto standard.
  3. Liu, S.: Decomposing DDC synthesized numbers (1996) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 5969) [ClassicSimilarity], result of:
              0.006079746 = score(doc=5969,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 5969, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5969)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Much literature has been written speculating upon how classification can be used in online catalogs to improve information retrieval. While some empirical studies have been done exploring whether the direct use of traditional classification schemes designed for a manual environment is effective and efficient in the online environment, none has manipulated these manual classifications in such a w ay as to take full advantage of the power of both the classification and computer. It has been suggested by some authors, such as Wajenberg and Drabenstott, that this power could be realized if the individual components of synthesized DDC numbers could be identified and indexed. This paper looks at the feasibility of automatically decomposing DDC synthesized numbers and the implications of such decomposition for information retrieval. Based on an analysis of the instructions for synthesizing numbers in the main class Arts (700) and all DDC Tables, 17 decomposition rules were defined, 13 covering the Add Notes and four the Standard Subdivisions. 1,701 DDC synthesized numbers were decomposed by a computer system called DND (Dewey Number Decomposer), developed by the author. From the 1,701 numbers, 600 were randomly selected fo r examination by three judges, each evaluating 200 numbers. The decomposition success rate was 100% and it was concluded that synthesized DDC numbers can be accurately decomposed automatically. The study has implications for information retrieval, expert systems for assigning DDC numbers, automatic indexing, switching language development, enhancing classifiers' work, teaching library school students, and providing quality control for DDC number assignments. These implications were explored using a prototype retrieval system.
  4. Schallier, W.: Why organize information if you can find it? : UDC and libraries in an Internet world (2007) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 549) [ClassicSimilarity], result of:
              0.006079746 = score(doc=549,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 549, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=549)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Belgians Otlet and LaFontaine created the Universal Decimal Classification in order to collect and organize the world's knowledge. This happened in an age when information was almost exclusively made available by libraries. Since the internet, the quantity of information outside libraries is enormous and keeps growing every day. The internet is accessible to anybody, it is fundamentally unorganized and its content changes constantly. Collecting and organizing the world's knowledge seem to have become an impossible ambition. Perhaps it is even unnecessary, since search engines make information retrievable now. And why would we organize information if we can find it? So what will be the role of UDC and libraries in this internet environment? Libraries can still play a role as a major information provider, if they adapt fully to the expectations of a modern end user. The design and the functionalities of online catalogues should allow maximal accessibility, usability and active participation of the end user in the internet environment. Metadata, like UDC, should maximize the visibility of information, enrich it and invite the end user to assign metadata himself.
    Type
    a
  5. Koch, T.; Vizine-Goetz, D.: DDC and knowledge organization in the digital library : Research and development. Demonstration pages (1999) 0.00
    9.11962E-4 = product of:
      0.001823924 = sum of:
        0.001823924 = product of:
          0.003647848 = sum of:
            0.003647848 = weight(_text_:a in 942) [ClassicSimilarity], result of:
              0.003647848 = score(doc=942,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.07643694 = fieldWeight in 942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=942)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    1. Increased Importance of Knowledge Organization in Internet Services - 2. Quality Subject Service and the role of classification - 3. Developing the DDC into a knowledge organization instrument for the digital library. OCLC site - 4. DESIRE's Barefoot Solutions of Automatic Classification - 5. Advanced Classification Solutions in DESIRE and CORC - 6. Future directions of research and development - 7. General references