Search (80 results, page 4 of 4)

  • × language_ss:"e"
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2000 TO 2010}
  1. Bosch, M.: Ontologies, different reasoning strategies, different logics, different kinds of knowledge representation : working together (2006) 0.00
    0.0021899752 = product of:
      0.0065699257 = sum of:
        0.0065699257 = weight(_text_:a in 166) [ClassicSimilarity], result of:
          0.0065699257 = score(doc=166,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12611452 = fieldWeight in 166, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
      0.33333334 = coord(1/3)
    
    Abstract
    The recent experiences in the building, maintenance and reuse of ontologies has shown that the most efficient approach is the collaborative one. However, communication between collaborators such as IT professionals, librarians, web designers and subject matter experts is difficult and time consuming. This is because there are different reasoning strategies, different logics and different kinds of knowledge representation in the applications of Semantic Web. This article intends to be a reference scheme. It uses concise and simple explanations that can be used in common by specialists of different backgrounds working together in an application of Semantic Web.
    Type
    a
  2. Zhonghong, W.; Chaudhry, A.S.; Khoo, C.: Potential and prospects of taxonomies for content organization (2006) 0.00
    0.0021899752 = product of:
      0.0065699257 = sum of:
        0.0065699257 = weight(_text_:a in 169) [ClassicSimilarity], result of:
          0.0065699257 = score(doc=169,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12611452 = fieldWeight in 169, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=169)
      0.33333334 = coord(1/3)
    
    Abstract
    While taxonomies are being increasingly discussed in published and grey literature, the term taxonomy still seems to be stated quite loosely and obscurely. This paper aims at explaining and clarifying the concept of taxonomy in the context of information organization. To this end, the salient features of taxonomies are identified and their scope, nature, and role are further elaborated based on an extensive literature review. In the meantime, the connection and distinctions between taxonomies and classification schemes and thesauri are also identified, and the rationale that taxonomies are chosen as a viable knowledge organization system used in organization-wide websites to support browsing and aid navigation is clarified.
    Type
    a
  3. Integrative level classification: Research project (2004-) 0.00
    0.0021899752 = product of:
      0.0065699257 = sum of:
        0.0065699257 = weight(_text_:a in 1151) [ClassicSimilarity], result of:
          0.0065699257 = score(doc=1151,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12611452 = fieldWeight in 1151, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1151)
      0.33333334 = coord(1/3)
    
    Abstract
    Integrative level classification (ILC) is a research project being developed since 2004 by some members of the Italian chapter of ISKO, also involving cooperation with other researchers. Anyone interested is welcome to contact us at: ilc@mate.unipv.it. Aim of the project is to test application of the theory of integrative levels to knowledge organization (KO). This implies a naturalistic-ontological approach to KO, which is obviously not the only possible approach - actually it even looks to be unfashionable nowadays, although it agrees with current trends towards interdisciplinarity and interrelation between many research fields.
  4. McCool, M.; St. Amant, K.: Field dependence and classification : implications for global information systems (2009) 0.00
    0.0021899752 = product of:
      0.0065699257 = sum of:
        0.0065699257 = weight(_text_:a in 2854) [ClassicSimilarity], result of:
          0.0065699257 = score(doc=2854,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12611452 = fieldWeight in 2854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes research designed to assess the interaction between culture and classification. Mounting evidence in cross-cultural psychology has indicated that culture may affect classification, which is an important dimension to global information systems. Data were obtained through three classification tasks, two of which were adapted from recent studies in cross-cultural psychology. Data were collected from 36 participants, 19 from China and 17 from the United States. The results of this research indicate that Chinese participants appear to be more field dependent, which may be related to a cultural preference for relationships instead of categories.
    Type
    a
  5. Olson, H.; Nielsen, J.; Dippie, S.R.: Encyclopaedist rivalry, classificatory commonality, illusory universality (2003) 0.00
    0.0021675134 = product of:
      0.00650254 = sum of:
        0.00650254 = weight(_text_:a in 2761) [ClassicSimilarity], result of:
          0.00650254 = score(doc=2761,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12482099 = fieldWeight in 2761, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2761)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes the cultural construction of classification as exemplified by the French Encyclopòudists, Jean d'Alembert and Denis Diderot, and the encyclopaedism of Samuel Taylor Coleridge analysing original texts digitized and encoded using XML and an adaptation of TEI. 1. Introduction This paper, focusing an encyclopaedism, is part of a larger study exploring the cultural construction of classification. The larger study explores possible foundations for bias in the structure of classifications with a view to more equitable practice. Bias in classification has been documented relative to race, ethnicity, gender, religion, sexuality and other factors. Analyses and proposed solutions have addressed only acute biases in particular systems, not the systems themselves. The project tentatively identifies the systemic roots of bias are culturally specific and reflected in the structure of conventional classifcatory practices. A wide range of western cultural texts from classic Greek philosophy to twentieth-century ethnography is being analysed. The consistency with which certain presumptions are revealed, no matter how different the philosophical and social views of the authors, indicates their ubiquity in western thought, though it is not mirrored in many other cultures. We hope that an understanding of these fundamental cultural presumptions will make space for development of alternative approaches to knowledge organization that can work alongside conventional methods. This paper describes an example of the first phase of the project, which is a deconstruction developed from relevant texts. In the context of encyclopaedism the key texts used in this paper are Jean d'Alembert's Preliminary Discourse to the Encyclopedie, selections from Denis Diderot's contributions to the Encyclopedie, and Samuel Taylor Coleridge's Treatise an Method and Prospectus of the Encyclopedia Metropolitana. We are analysing these texts in digital form using Extensible Markup Language (XML) implemented via a document type definition (DTD) created for the purpose including elements of the Text Encoding Initiative (TEI). We will first explain the encoding methodology; then define the differences between the French Encyclopaedists and the English Coleridge; deconstruct these differences by allowing the commonalities between the texts to emerge; and, finally, examine their cultural specificity.
    Type
    a
  6. Jacob, E.K.: ¬The everyday world of work : two approaches to the investigation of classification in context (2001) 0.00
    0.0019158293 = product of:
      0.005747488 = sum of:
        0.005747488 = weight(_text_:a in 4494) [ClassicSimilarity], result of:
          0.005747488 = score(doc=4494,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.11032722 = fieldWeight in 4494, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4494)
      0.33333334 = coord(1/3)
    
    Abstract
    One major aspect of T.D. Wilson's research has been his insistence on situating the investigation of information behaviour within the context of its occurrence - within the everyday world of work. The significance of this approach is reviewed in light of the notion of embodied cognition that characterises the evolving theoretical episteme in cognitive science research. Embodied cognition employs complex external props such as stigmergic structures and cognitive scaffoldings to reduce the cognitive burden on the individual and to augment human problem-solving activities. The cognitive function of the classification scheme is described as exemplifying both stigmergic structures and cognitive scaffoldings. Two different but complementary approaches to the investigation of situated cognition are presented: cognition-as-scaffolding and cognition-as-infrastructure. Classification-as-scaffolding views the classification scheme as a knowledge storage device supporting and promoting cognitive economy. Classification-as-infrastructure views the classification system as a social convention that, when integrated with technological structures and organisational practices, supports knowledge management work. Both approaches are shown to build upon and extend Wilson's contention that research is most productive when it attends to the social and organisational contexts of cognitive activity by focusing on the everyday world of work.
    Type
    a
  7. Raju, A.A.N.: Colon Classification: theory and practice : a self instructional manual (2001) 0.00
    0.0019158293 = product of:
      0.005747488 = sum of:
        0.005747488 = weight(_text_:a in 1482) [ClassicSimilarity], result of:
          0.005747488 = score(doc=1482,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.11032722 = fieldWeight in 1482, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1482)
      0.33333334 = coord(1/3)
    
    Abstract
    Colon Classification (CC) is truly the first freely faceted scheme for library classification devised and propagated by Dr. S.R. Ranganathan. The scheme is being taught in theory and practice to the students in most of the LIS schools in India and abroad also. Many manuals, Guide books and Introductory works have been published on CC in the past. But the present work tread a new path in presenting CC to the student, teaching and professional community. The present work Colon Classification: Theory and Practice; A Self Instructional Manual is the result of author's twenty-five years experience of teaching theory and practice of CC to the students of LIS. For the first ime concerted and systematic attempt has been made to present theory and practice of CC in self-instructional mode, keeping in view the requirements of students learners of Open Universities/ Distance Education Institutions in particular. The other singificant and novel features introduced in this manual are: Presenting the scope of each block consisting certain units bollowed by objectives, introduction, sections, sub-sections, self check exercises, glossary and assignment of each unit. It is hoped that all these features will help the users/readers of this manual to understand and grasp quickly, the intricacies involved in theory and practice of CC(6th Edition). The manual is presented in three blocks and twelve units.
  8. Cordeiro, M.I.; Slavic, A.: Data models for knowledge organization tools : evolution and perspectives (2003) 0.00
    0.0018771215 = product of:
      0.0056313644 = sum of:
        0.0056313644 = weight(_text_:a in 2632) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=2632,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 2632, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2632)
      0.33333334 = coord(1/3)
    
    Type
    a
  9. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    0.0018771215 = product of:
      0.0056313644 = sum of:
        0.0056313644 = weight(_text_:a in 2663) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=2663,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 2663, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.33333334 = coord(1/3)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
    Type
    a
  10. Negrini, G.; Zozi, P.: Ontological analysis of the literary work of art (2003) 0.00
    0.0018771215 = product of:
      0.0056313644 = sum of:
        0.0056313644 = weight(_text_:a in 2687) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=2687,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 2687, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2687)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontological structures can aid the understanding and modelling of works of art. Ontology of the aesthetic object, and particularly of the literary work, has been analysed by Hartmann and Ingarden. Application of Dahlberg's ontical 'systematifier' model enabled us to organize the entire structure of the Thesaurus of Italian Literature, and to highlight a number of significant aspects of the literary work. After describing the conclusions arising from the experience of compiling the thesaurus, the paper briefly outlines Hartmann's and Ingarden's theories of levels and seeks to identify commonalities between the ontological analysis of the two theories and the conclusions of the thesaurus.
    Type
    a
  11. Kwasnik, B.H.; Rubin, V.L.: Stretching conceptual structures in classifications across languages and cultures (2003) 0.00
    0.0018771215 = product of:
      0.0056313644 = sum of:
        0.0056313644 = weight(_text_:a in 5517) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=5517,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 5517, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5517)
      0.33333334 = coord(1/3)
    
    Abstract
    The authors describe the difficulties of translating classifications from a source language and culture to another language and culture. To demonstrate these problems, kinship terms and concepts from native speakers of fourteen languages were collected and analyzed to find differences between their terms and structures and those used in English. Using the representations of kinship terms in the Library of Congress Classification (LCC) and the Dewey Decimal Classification (DDC) as examples, the authors identified the source of possible lack of mapping between the domain of kinship in the fourteen languages studied and the LCC and DDC. Finally, some preliminary suggestions for how to make translated classifications more linguistically and culturally hospitable are offered.
    Type
    a
  12. Mai, J.E.: Classification of the Web : challenges and inquiries (2004) 0.00
    0.0017697671 = product of:
      0.0053093014 = sum of:
        0.0053093014 = weight(_text_:a in 3075) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=3075,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 3075, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=3075)
      0.33333334 = coord(1/3)
    
    Type
    a
  13. Svenonius, E.: ¬The epistemological foundations of knowledge representations (2004) 0.00
    0.0017697671 = product of:
      0.0053093014 = sum of:
        0.0053093014 = weight(_text_:a in 766) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=766,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=766)
      0.33333334 = coord(1/3)
    
    Type
    a
  14. Keilty, P.: Tabulating queer : space, perversion, and belonging (2009) 0.00
    0.0017697671 = product of:
      0.0053093014 = sum of:
        0.0053093014 = weight(_text_:a in 3253) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=3253,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 3253, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=3253)
      0.33333334 = coord(1/3)
    
    Type
    a
  15. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.00
    0.0017558866 = product of:
      0.0052676597 = sum of:
        0.0052676597 = weight(_text_:a in 325) [ClassicSimilarity], result of:
          0.0052676597 = score(doc=325,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10111657 = fieldWeight in 325, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.33333334 = coord(1/3)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Content
    Inhalt: - Chapter 1: Classifying Science: 1.1. A Simple Classificatory Guideline - 1.2. The First "Cut" (and Plan of Work) - 1.3. Some Preliminaries - Chapter 2: Classifying Phenomena and Data: 2.1. Classifying Phenomena - 2.2. Classifying Data - Chapter 3: Classifying Theory: 3.1. Typology of Theory - 3.2. What Is a Theory? - 3.3. Evaluating Theories - 3.4. Types of Theory and the Five Types of Causation - 3.5. Classifying Individual Theories - 3.6. Advantages of a Typology of Theory - Chapter 4: Classifying Method: 4.1. Classifying Methods - 4.2. Typology of Strengths and Weaknesses of Methods - 4.3. Qualitative Versus Quantitative Analysis Revisited - 4.4. Evaluating Methods - 4.5. Classifying Particular Methods Within The Typology - 4.6. Advantages of a Typology of Methods - Chapter 5: Classifying Practice: 5.1. Errors and Biases in ScienceChapter - 5.2. Typology of (Critiques of) Scientific Practice - 5.3. Utilizing This Classification - 5.4. The Five Types of Ethical Analysis - Chapter 6: Drawing Connections Across These Classifications: 6.1. Theory and Method - 6.2. Theory (Method) and Phenomena (Data) - 6.3. Better Paradigms - 6.4. Critiques of Scientific Practice: Are They Correlated with Other Classifications? - Chapter 7: Classifying Scientific Documents: 7.1. Faceted or Enumerative? - 7.2. Classifying By Phenomena Studied - 7.3. Classifying By Theory Used - 7.4. Classifying By Method Used - 7.5 Links Among Subjects - 7.6. Type of Work, Language, and More - 7.7. Critiques of Scientific Practice - 7.8. Classifying Philosophy - 7.9. Evaluating the System - Chapter 8: Concluding Remarks: 8.1. The Classifications - 8.2. Advantages of These Various Classifications - 8.3. Drawing Connections Across Classifications - 8.4. Golden Mean Arguments - 8.5. Why Should Science Be Believed? - 8.6. How Can Science Be Improved? - 8.7. How Should Science Be Taught?
    Footnote
    Rez. in: KO 32(2005) no.2, S.93-95 (H. Albrechtsen): "The book deals with mapping of the structures and contents of sciences, defined broadly to include the social sciences and the humanities. According to the author, the study of science, as well as the practice of science, could benefit from a detailed classification of different types of science. The book defines five universal constituents of the sciences: phenomena, data, theories, methods and practice. For each of these constituents, the author poses five questions, in the well-known 5W format: Who, What, Where, When, Why? - with the addition of the question How? (Szostak 2003). Two objectives of the author's endeavor stand out: 1) decision support for university curriculum development across disciplines and decision support for university students at advanced levels of education in selection of appropriate courses for their projects and to support cross-disciplinary inquiry for researchers and students; 2) decision support for researchers and students in scientific inquiry across disciplines, methods and theories. The main prospective audience of this book is university curriculum developers, university students and researchers, in that order of priority. The heart of the book is the chapters unfolding the author's ideas about how to classify phenomena and data, theory, method and practice, by use of the 5W inquiry model. . . .
  16. Scerri, E.R.: ¬The periodic table : its story and its significance (2007) 0.00
    0.001625635 = product of:
      0.0048769047 = sum of:
        0.0048769047 = weight(_text_:a in 2492) [ClassicSimilarity], result of:
          0.0048769047 = score(doc=2492,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.09361574 = fieldWeight in 2492, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2492)
      0.33333334 = coord(1/3)
    
    Abstract
    The periodic table is one of the most potent icons in science. It lies at the core of chemistry and embodies the most fundamental principles of the field. The one definitive text on the development of the periodic table by van Spronsen (1969), has been out of print for a considerable time. The present book provides a successor to van Spronsen, but goes further in giving an evaluation of the extent to which modern physics has, or has not, explained the periodic system. The book is written in a lively style to appeal to experts and interested lay-persons alike. The Periodic Table begins with an overview of the importance of the periodic table and of the elements and it examines the manner in which the term 'element' has been interpreted by chemists and philosophers. The book then turns to a systematic account of the early developments that led to the classification of the elements including the work of Lavoisier, Boyle and Dalton and Cannizzaro. The precursors to the periodic system, like Dobereiner and Gmelin, are discussed. In chapter 3 the discovery of the periodic system by six independent scientists is examined in detail. Two chapters are devoted to the discoveries of Mendeleev, the leading discoverer, including his predictions of new elements and his accommodation of already existing elements. Chapters 6 and 7 consider the impact of physics including the discoveries of radioactivity and isotopy and successive theories of the electron including Bohr's quantum theoretical approach. Chapter 8 discusses the response to the new physical theories by chemists such as Lewis and Bury who were able to draw on detailed chemical knowledge to correct some of the early electronic configurations published by Bohr and others. Chapter 9 provides a critical analysis of the extent to which modern quantum mechanics is, or is not, able to explain the periodic system from first principles. Finally, chapter 10 considers the way that the elements evolved following the Big Bang and in the interior of stars. The book closes with an examination of further chemical aspects including lesser known trends within the periodic system such as the knight's move relationship and secondary periodicity, as well at attempts to explain such trends.
    Footnote
    Rez. in: KO 35(2008) no.4, S.251-254 (B. Hjoerland): "The book is about the classification of chemical elements known as the periodical system. It is described as "one of the most potent icons in science [.] One sees periodic tables everywhere: in industrial labs, workshops, academic labs, and of course, lecture halls" (p. xiii). Among all taxonomies in all domains, there is probably none more respected and more useful than this one. As Scerri states (p. 25): The periodic table ranks as one of the most fruitful and unifying ideas in the whole of modern science, comparable perhaps with Darwin's theory of evolution by natural selection. Unlike such theories as Newtonian mechanics, the periodic table has not been falsified by developments in modern physics but has evolved while remaining essentially unchanged. After evolving for nearly 150 years through the work of numerous individuals, the periodic table remains at the heart of chemistry. This is mainly because it is of immense practical benefit for making predictions about all manner of chemical and physical properties of the elements and possibilities for bond formation. The periodic system provides the basic criteria for organizing knowledge about all the material stuff in the entire universe. It is thus a model that anybody with interests in knowledge organization (KO) should know. Knowledge about the history, philosophy and status of the periodic system also provides important insight for knowledge organization in general. . . . Scerri's book demonstrates how one of the most important classification systems has evolved and what kinds of conceptualizations and classification criteria are at work in it. It is probably the best book about the best classification system ever constructed. It should belong to any library supporting teaching and research in knowledge organization."
  17. Olson, H.A.: Cultural discourse of classification : indigeous alternatives to the tradition of Aristotle, Durkheim, and Foucault (2001) 0.00
    0.0015485462 = product of:
      0.0046456386 = sum of:
        0.0046456386 = weight(_text_:a in 1594) [ClassicSimilarity], result of:
          0.0046456386 = score(doc=1594,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.089176424 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
      0.33333334 = coord(1/3)
    
    Type
    a
  18. Beghtol, C.: Response to Hjoerland and Nicolaisen (2004) 0.00
    0.0015485462 = product of:
      0.0046456386 = sum of:
        0.0046456386 = weight(_text_:a in 3536) [ClassicSimilarity], result of:
          0.0046456386 = score(doc=3536,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.089176424 = fieldWeight in 3536, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3536)
      0.33333334 = coord(1/3)
    
    Abstract
    Second, the paper posits that these different reasons for creating classification systems strongly influence the content and extent of the two kinds of classifications, but not necessarily their structures. By definition, naïve classifications for new knowledge have been developed for discrete areas of disciplinary inquiry in new areas of knowledge. These classifications do not attempt to classify the whole of that disciplinary area. That is, naïve classifications have a explicit purpose that is significantly different from the purpose of the major disciplinary classifications Hjoer-land and Nicolaisen provide as examples of classifications they think I discuss under the rubric of "naïve classifications" (e.g., classifications for the entire field of archaeology, biology, linguistics, music, psychology, etc.). My paper is not concerned with these important classifications for major disciplinary areas. Instead, it is concerned solely and specifically with scholarly classifications for small areas of new knowledge within these major disciplines (e.g., cloth of aresta, double harpsichords, child-rearing practices, anomalous phenomena, etc.). Thus, I have nowhere suggested or implied that the broad disciplinary classifications mentioned by Hjoerland and Nicolaisen are appropriately categorized as "naïve classifications." For example, I have not associated the Periodic System of the Elements with naïve classifications, as Hjoerland and Nicolaisen state that I have done. Indeed, broad classifications of this type fall well outside the definition of naïve classifications set out in my paper. In this case, too, 1 believe that Hjorland and Nicolaisen have misunderstood an important point in my paper. I agree with a number of points made in Hjorland and Nicolaisen's paper. In particular, I agree that researchers in the knowledge organization field should adhere to the highest standards of scholarly and scientific precision. For that reason, I am glad to have had the opportunity to respond to their paper.
    Footnote
    Bezugnahme auf: Hjoerland, B., J. Nicolaisen: Scientific and scholarly classifications are not "naïve": a comment to Beghtol (2003). In: Knowledge organization. 31(2004) no.1, S.55-61. - Vgl. die Erwiderung von Nicolaisen und Hjoerland in KO 31(2004) no.3, S.199-201.
    Type
    a
  19. Advances in classification research. Vol.10 : Proceedings of the 10th ASIS SIG/CR Classification Research Workshop, held at the 62nd ASIS Annual Meeting Nov 1-5, 1999, Washington (2001) 0.00
    0.0013273255 = product of:
      0.0039819763 = sum of:
        0.0039819763 = weight(_text_:a in 1586) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=1586,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 1586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1586)
      0.33333334 = coord(1/3)
    
    Content
    Enthält die Beiträge: DAVENPORT, E.: Implicit orders: documentary genres and organizational practice; ANDERSEN, J. u. F.S. CHRISTENSEN: Wittgenstein and indexing theory; OLSON, H.A.: Cultural discourses of classification: indigeous alternatives to the tradition of Aristotle, Dürkheim, and Foucault; FRÂNCU, V.: A universal classification system going through changes; JACOB, E.K. u. U. PRISS: Nontraditional indexing structures for the management of electronic resources; BROOKS, T.A.: Relevance auras: macro patterns and micro scatter; RUIZ, M.E. u. SRINIVASAN, P.: Combining machine learning and hierarchical indexing structures for text categorization; WEEDMAN, J.: Local practice and the growth of knowledge: decisions in subject access to digitized images
  20. Dousa, T.M.: Empirical observation, rational structures, and pragmatist aims : epistemology and method in Julius Otto Kaiser's theory of systematic indexing (2008) 0.00
    0.0013273255 = product of:
      0.0039819763 = sum of:
        0.0039819763 = weight(_text_:a in 2508) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=2508,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 2508, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2508)
      0.33333334 = coord(1/3)
    
    Type
    a

Types

  • a 68
  • m 7
  • el 4
  • s 2
  • b 1
  • More… Less…