Search (8 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2000 TO 2010}
  1. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.01
    0.013040888 = product of:
      0.06520444 = sum of:
        0.06520444 = weight(_text_:index in 2651) [ClassicSimilarity], result of:
          0.06520444 = score(doc=2651,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.28967714 = fieldWeight in 2651, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
      0.2 = coord(1/5)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
  2. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
          0.04885377 = score(doc=166,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 166, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
      0.2 = coord(1/5)
    
    Date
    10. 9.2000 17:38:22
  3. Hjoerland, B.: ¬The methodology of constructing classification schemes : a discussion of the state-of-the-art (2003) 0.01
    0.008693925 = product of:
      0.043469626 = sum of:
        0.043469626 = weight(_text_:index in 2760) [ClassicSimilarity], result of:
          0.043469626 = score(doc=2760,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.1931181 = fieldWeight in 2760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=2760)
      0.2 = coord(1/5)
    
    Abstract
    Special classifications have been somewhat neglected in KO compared to general classifications. The methodology of constructing special classifications is important, however, also for the methodology of constructing general classification schemes. The methodology of constructing special classifications can be regarded as one among about a dozen approaches to domain analysis. The methodology of (special) classification in LIS has been dominated by the rationalistic facet-analytic tradition, which, however, neglects the question of the empirical basis of classification. The empirical basis is much better grasped by, for example, bibliometric methods. Even the combination of rational and empirical methods is insufficient. This presentation will provide evidence for the necessity of historical and pragmatic methods for the methodology of classification and will point to the necessity of analyzing "paradigms". The presentation covers the methods of constructing classifications from Ranganathan to the design of ontologies in computer science and further to the recent "paradigm shift" in classification research. 1. Introduction Classification of a subject field is one among about eleven approaches to analyzing a domain that are specific for information science and in my opinion define the special competencies of information specialists (Hjoerland, 2002a). Classification and knowledge organization are commonly regarded as core qualifications of librarians and information specialists. Seen from this perspective one expects a firm methodological basis for the field. This paper tries to explore the state-of-the-art conceming the methodology of classification. 2. Classification: Science or non-science? As it is part of the curriculum at universities and subject in scientific journals and conferences like ISKO, orte expects classification/knowledge organization to be a scientific or scholarly activity and a scientific field. However, very often when information specialists classify or index documents and when they revise classification system, the methods seem to be rather ad hoc. Research libraries or scientific databases may employ people with adequate subject knowledge. When information scientists construct or evaluate systems, they very often elicit the knowledge from "experts" (Hjorland, 2002b, p. 260). Mostly no specific arguments are provided for the specific decisions in these processes.
  4. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.01
    0.008374932 = product of:
      0.04187466 = sum of:
        0.04187466 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
          0.04187466 = score(doc=780,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.23214069 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
      0.2 = coord(1/5)
    
    Date
    22.12.2007 17:22:31
  5. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.01
    0.00697911 = product of:
      0.03489555 = sum of:
        0.03489555 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
          0.03489555 = score(doc=3483,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.19345059 = fieldWeight in 3483, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
      0.2 = coord(1/5)
    
    Pages
    S.19-22
  6. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.01
    0.005583288 = product of:
      0.02791644 = sum of:
        0.02791644 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
          0.02791644 = score(doc=2763,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.15476047 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
      0.2 = coord(1/5)
    
    Date
    12. 9.2004 17:22:35
  7. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.01
    0.005583288 = product of:
      0.02791644 = sum of:
        0.02791644 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
          0.02791644 = score(doc=2346,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.15476047 = fieldWeight in 2346, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=2346)
      0.2 = coord(1/5)
    
    Date
    7.11.2008 15:22:04
  8. Broughton, V.: Essential classification (2004) 0.00
    0.0043469626 = product of:
      0.021734813 = sum of:
        0.021734813 = weight(_text_:index in 2824) [ClassicSimilarity], result of:
          0.021734813 = score(doc=2824,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.09655905 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
      0.2 = coord(1/5)
    
    Footnote
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."