Search (46 results, page 3 of 3)

  • × language_ss:"e"
  • × theme_ss:"Konzeption und Anwendung des Prinzips Thesaurus"
  • × year_i:[2010 TO 2020}
  1. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.01
    0.0067287134 = product of:
      0.02018614 = sum of:
        0.010709076 = weight(_text_:in in 4639) [ClassicSimilarity], result of:
          0.010709076 = score(doc=4639,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 4639, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.009477063 = weight(_text_:und in 4639) [ClassicSimilarity], result of:
          0.009477063 = score(doc=4639,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.09795051 = fieldWeight in 4639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
      0.33333334 = coord(2/6)
    
    Abstract
    This thesis focuses on conversion of vocabularies for representation and integration of collections on the Semantic Web. A secondary focus is how to represent metadata schemas (RDF Schemas representing metadata element sets) such that they interoperate with vocabularies. The primary domain in which we operate is that of cultural heritage collections. The background worldview in which a solution is sought is that of the Semantic Web research paradigmwith its associated theories, methods, tools and use cases. In other words, we assume the SemanticWeb is in principle able to provide the context to realize interoperable collections. Interoperability is dependent on the interplay between representations and the applications that use them. We mean applications in the widest sense, such as "search" and "annotation". These applications or tasks are often present in software applications, such as the E-Culture application. It is therefore necessary that applications requirements on the vocabulary representation are met. This leads us to formulate the following problem statement: HOW CAN EXISTING VOCABULARIES BE MADE AVAILABLE TO SEMANTIC WEB APPLICATIONS?
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  2. ¬The Great Debate, 19 February 2015, ISKO UK (2015) 0.01
    0.00652498 = product of:
      0.01957494 = sum of:
        0.007728611 = weight(_text_:in in 2105) [ClassicSimilarity], result of:
          0.007728611 = score(doc=2105,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 2105, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2105)
        0.01184633 = weight(_text_:und in 2105) [ClassicSimilarity], result of:
          0.01184633 = score(doc=2105,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 2105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2105)
      0.33333334 = coord(2/6)
    
    Abstract
    Once upon a time, the thesaurus was venerated. It marked a breakthrough in the retrieval of very specific needles of information hidden in large haystacks. Some of the veneration rubbed off on to the trained information professionals, who alone mastered the occult art of using it to concoct effective search strategies. All this was in the time before we had a computer on every desk, when a collection of 10,000 articles was considered large, and long before the Google era. But now, who has the patience to consult a complicated thesaurus? Only a dedicated few. Has the thesaurus passed its sell-by date? And even its use-by date? These questions, and more, were tossed around at the Great Debate by a community of enthusiasts. While some limitations of the old-fashioned (?) thesaurus were noted, it still received a happy vote of confidence at the end. - Judi Vernau (2015) First speaker for the proposition - Vanda Broughton (2015) First speaker for the opposition - Helen Lippell (2015) Second speaker for the proposition - Leonard Will (2015) Second speaker for the opposition - Cross-examination of expert witnesses - Martin White (2015) Questions and discussion from the floor
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  3. Mu, X.; Lu, K.; Ryu, H.: Explicitly integrating MeSH thesaurus help into health information retrieval systems : an empirical user study (2014) 0.01
    0.00652498 = product of:
      0.01957494 = sum of:
        0.007728611 = weight(_text_:in in 2703) [ClassicSimilarity], result of:
          0.007728611 = score(doc=2703,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 2703, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2703)
        0.01184633 = weight(_text_:und in 2703) [ClassicSimilarity], result of:
          0.01184633 = score(doc=2703,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 2703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2703)
      0.33333334 = coord(2/6)
    
    Abstract
    When consumers search for health information, a major obstacle is their unfamiliarity with the medical terminology. Even though medical thesauri such as the Medical Subject Headings (MeSH) and related tools (e.g., the MeSH Browser) were created to help consumers find medical term definitions, the lack of direct and explicit integration of these help tools into a health retrieval system prevented them from effectively achieving their objectives. To explore this issue, we conducted an empirical study with two systems: One is a simple interface system supporting query-based searching; the other is an augmented system with two new components supporting MeSH term searching and MeSH tree browsing. A total of 45 subjects were recruited to participate in the study. The results indicated that the augmented system is more effective than the simple system in terms of improving user-perceived topic familiarity and question-answer performance, even though we did not find users spend more time on the augmented system. The two new MeSH help components played a critical role in participants' health information retrieval and were found to allow them to develop new search strategies. The findings of the study enhanced our understanding of consumers' search behaviors and shed light on the design of future health information retrieval systems.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  4. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.01
    0.00652498 = product of:
      0.01957494 = sum of:
        0.007728611 = weight(_text_:in in 5997) [ClassicSimilarity], result of:
          0.007728611 = score(doc=5997,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 5997, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.01184633 = weight(_text_:und in 5997) [ClassicSimilarity], result of:
          0.01184633 = score(doc=5997,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
      0.33333334 = coord(2/6)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  5. Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.: ¬A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps (2011) 0.01
    0.0060736625 = product of:
      0.018220987 = sum of:
        0.008743925 = weight(_text_:in in 4800) [ClassicSimilarity], result of:
          0.008743925 = score(doc=4800,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14725187 = fieldWeight in 4800, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=4800)
        0.009477063 = weight(_text_:und in 4800) [ClassicSimilarity], result of:
          0.009477063 = score(doc=4800,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.09795051 = fieldWeight in 4800, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=4800)
      0.33333334 = coord(2/6)
    
    Abstract
    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.
    Content
    Article Outline 1. Introduction 2. SKOS-based multilingual thesaurus of geological time scale 2.1. Addressing the insufficiency of SKOS in the context of the Semantic Web 2.2. Addressing semantics and syntax/lexicon in multilingual GTS terms 2.3. Extending SKOS model to capture GTS structure 2.4. Summary of building the SKOS-based MLTGTS 3. Recognizing and translating GTS terms retrieved from WMS 4. Pilot system, results, and evaluation 5. Discussion 6. Conclusions Vgl. unter: http://www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271720&_user=3865853&_pii=S0098300411000744&_check=y&_origin=&_coverDate=31-Oct-2011&view=c&wchp=dGLbVlt-zSkzS&_valck=1&md5=e2c1daf53df72d034d22278212578f42&ie=/sdarticle.pdf.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  6. Hedden, H.: ¬The accidental taxonomist (2012) 0.01
    0.0055388156 = product of:
      0.016616447 = sum of:
        0.0071393843 = weight(_text_:in in 2915) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2915,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2915, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2915)
        0.009477063 = weight(_text_:und in 2915) [ClassicSimilarity], result of:
          0.009477063 = score(doc=2915,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.09795051 = fieldWeight in 2915, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=2915)
      0.33333334 = coord(2/6)
    
    Abstract
    "Clearly details the conceptual and practical notions of controlled vocabularies. . provides a crash course for newcomers and offers experienced practitioners a common frame of reference. A valuable book." - Christine Connors, TriviumRLG LLC The Accidental Taxonomist is the most comprehensive guide available to the art and science of building information taxonomies. Heather Hedden-one of today's leading writers, instructors, and consultants on indexing and taxonomy topics-walks readers through the process, displaying her trademark ability to present highly technical information in straightforward, comprehensible English. Drawing on numerous real-world examples, Hedden explains how to create terms and relationships, select taxonomy management software, design taxonomies for human versus automated indexing, manage enterprise taxonomy projects, and adapt taxonomies to various user interfaces. The result is a practical and essential guide for information professionals who need to effectively create or manage taxonomies, controlled vocabularies, and thesauri. "A wealth of descriptive reference content is balanced with expert guidance. . Open The Accidental Taxonomist to begin the learning process or to refresh your understanding of the depth and breadth of this demanding discipline." - Lynda Moulton, Principal Consultant, LWM Technology Services "From the novice taxonomist to the experienced professional, all will find helpful, practical advice in The Accidental Taxonomist." - Trish Yancey, TCOO, Synaptica, LLC "This book squarely addresses the growing demand for and interest in taxonomy. ...Hedden brings a variety of background experience, including not only taxonomy construction but also abstracting and content categorization and creating back-of-the-book indexes. These experiences serve her well by building a broad perspective on the similarities as well as real differences between often overlapping types of work." - Marjorie M. K. Hlava, President and Chairman, Access Innovations, Inc., and Chair, SLA Taxonomy Division
    Footnote
    Rez. in: IWP 64(2013) H.6, S.373-374 (J. Fassbender)
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus

Types

  • a 39
  • el 5
  • m 4
  • n 1
  • r 1
  • x 1
  • More… Less…