Search (60 results, page 3 of 3)

  • × language_ss:"e"
  • × theme_ss:"Literaturübersicht"
  1. Gabbard, R.: Recent literature shows accelerated growth in hypermedia tools : an annotated bibliography (1994) 0.01
    0.014127021 = product of:
      0.028254041 = sum of:
        0.028254041 = product of:
          0.056508083 = sum of:
            0.056508083 = weight(_text_:22 in 8460) [ClassicSimilarity], result of:
              0.056508083 = score(doc=8460,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.30952093 = fieldWeight in 8460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8460)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Reference services review. 22(1994) no.2, S.31-40
  2. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.01
    0.014127021 = product of:
      0.028254041 = sum of:
        0.028254041 = product of:
          0.056508083 = sum of:
            0.056508083 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.056508083 = score(doc=7415,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
  3. Fischer, K.S.: Critical views of LCSH, 1990-2001 : the third bibliographic essay (2005) 0.01
    0.012648531 = product of:
      0.025297062 = sum of:
        0.025297062 = product of:
          0.050594125 = sum of:
            0.050594125 = weight(_text_:classification in 5738) [ClassicSimilarity], result of:
              0.050594125 = score(doc=5738,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.3047229 = fieldWeight in 5738, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5738)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Vgl. auch die Vorgänger: Kirtland, M., P.A. Cochrane: Critical views of LCSH - Library of Congress Subject Headings: a bibliographic and bibliometric essay. In: Cataloging and classification quarterly. 1(1982) no.2/3, S.71-93. Shubert, S.B.: Critical views of LCSH - ten years later: a bibliographic essay. In: Cataloging and classification quarterly. 15(1992) no.2, S.37-97.
    Source
    Cataloging and classification quarterly. 41(2005) no.1, S.63-109
  4. Yu, N.: Readings & Web resources for faceted classification 0.01
    0.012392979 = product of:
      0.024785958 = sum of:
        0.024785958 = product of:
          0.049571916 = sum of:
            0.049571916 = weight(_text_:classification in 4394) [ClassicSimilarity], result of:
              0.049571916 = score(doc=4394,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.29856625 = fieldWeight in 4394, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4394)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The term "facet" has been used in various places, while in most cases it is just a buzz word to replace what is indeed "aspect" or "category". The references below either define and explain the original concept of facet or provide guidelines for building 'real' faceted search/browse. I was interested in faceted classification because it seems to be a natural and efficient way for organizing and browsing Web collections. However, to automatically generate facets and their isolates is extremely difficult since it involves concept extraction and concept grouping, both of which are difficult problems by themselves. And it is almost impossible to achieve mutually exclusive and jointly exhaustive 'true' facets without human judgment. Nowadays, faceted search/browse widely exists, implicitly or explicitly, on a majority of retail websites due to the multi-aspects nature of the data. However, it is still rarely seen on any digital library sites. (I could be wrong since I haven't kept myself updated with this field for a while.)
  5. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.01
    0.012361143 = product of:
      0.024722286 = sum of:
        0.024722286 = product of:
          0.04944457 = sum of:
            0.04944457 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
              0.04944457 = score(doc=6084,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.2708308 = fieldWeight in 6084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6084)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  6. Taylor, A.G.: Enhancing subject access in online systems : the year's work in subject analysis, 1991 (1992) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 1504) [ClassicSimilarity], result of:
              0.04673685 = score(doc=1504,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 1504, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1504)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The research literature published in 1991 in the following categories is examined: users and subject searching, subject access in online catalogs, subject cataloging and indexing, information retrieval, thesaurus and indexing approaches, classification, and specialized subjects and materials. The preponderance of the research dealt with improving subject access in online systems. This seems to have been the result of acceptance by many researchers of a number of previously researched hypotheses that, taken together, indicate that improving online systems holds more promise than trying to perfect the processes of subject analysis
  7. Stone, A.T.: That elusive concept of 'aboutness' : the year's work in subject analysis, 1992 (1993) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 5353) [ClassicSimilarity], result of:
              0.04673685 = score(doc=5353,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 5353, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5353)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interest in classification theory and in facet-based systems was more evident during 1992, the year that marked the one hundredth anniversary of the birth of Ranganathan. Efforts to simplify subject cataloging routines include exploration of automatic and semiautomatic methods. Solutions to online subject searching problems might be shifting to the domains of information-retrieval experts. The 1992 subject analysis literature is examined and described using the following categories: theoretical foundations, cataloging practices, subject analysis in online environments, and specialized materials and topics
  8. Fast, K.; Leise, F.; Steckel, M.: Facets and controlled vocabularies : an annotated bibliography (2003) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 2900) [ClassicSimilarity], result of:
              0.04673685 = score(doc=2900,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 2900, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2900)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  9. Chowdhury, G.G.: ¬The Internet and information retrieval research : a brief review (1999) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 3424) [ClassicSimilarity], result of:
              0.04673685 = score(doc=3424,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 3424, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3424)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Internet and related information services attract increasing interest from information retrieval researchers. A survey of recent publications shows that frequent topics are the effectiveness of search engines, information validation and quality, user studies, design of user interfaces, data structures and metadata, classification and vocabulary based aids, and indexing and search agents. Current research in these areas is briefly discussed. The changing balance between CD-ROM sources and traditional online searching is quite important and is noted
  10. Kirkland, L.N.: Resources for catalogers : an annotated bibliography (2005) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 5716) [ClassicSimilarity], result of:
              0.04673685 = score(doc=5716,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 5716, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5716)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Cataloging and classification quarterly. 40(2005) no.1, S.79-xx
  11. Genereux, C.: Building connections : a review of the serials literature 2004 through 2005 (2007) 0.01
    0.010595265 = product of:
      0.02119053 = sum of:
        0.02119053 = product of:
          0.04238106 = sum of:
            0.04238106 = weight(_text_:22 in 2548) [ClassicSimilarity], result of:
              0.04238106 = score(doc=2548,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.23214069 = fieldWeight in 2548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2548)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  12. Lentz, E.A.: Editing recon records : when is enough, enough? A selective review of the literature (1992) 0.01
    0.010223686 = product of:
      0.020447372 = sum of:
        0.020447372 = product of:
          0.040894743 = sum of:
            0.040894743 = weight(_text_:classification in 532) [ClassicSimilarity], result of:
              0.040894743 = score(doc=532,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.24630459 = fieldWeight in 532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Cataloging and classification quarterly. 14(1992) nos.3/4, S.129-144
  13. Terrill, L.J.: ¬The state of cataloging research : an analysis of peer-reviewed journal literature, 2010-2014 (2016) 0.01
    0.010223686 = product of:
      0.020447372 = sum of:
        0.020447372 = product of:
          0.040894743 = sum of:
            0.040894743 = weight(_text_:classification in 5137) [ClassicSimilarity], result of:
              0.040894743 = score(doc=5137,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.24630459 = fieldWeight in 5137, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5137)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Cataloging and classification quarterly. 54(2016) no.8, S.593-611
  14. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.01
    0.009660476 = product of:
      0.019320952 = sum of:
        0.019320952 = product of:
          0.038641904 = sum of:
            0.038641904 = weight(_text_:classification in 2467) [ClassicSimilarity], result of:
              0.038641904 = score(doc=2467,freq=14.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.23273596 = fieldWeight in 2467, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  15. Corbett, L.E.: Serials: review of the literature 2000-2003 (2006) 0.01
    0.008829388 = product of:
      0.017658776 = sum of:
        0.017658776 = product of:
          0.03531755 = sum of:
            0.03531755 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.03531755 = score(doc=1088,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.19345059 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  16. Woodward, J.: Cataloging and classifying information resources on the Internet (1996) 0.01
    0.00876316 = product of:
      0.01752632 = sum of:
        0.01752632 = product of:
          0.03505264 = sum of:
            0.03505264 = weight(_text_:classification in 7397) [ClassicSimilarity], result of:
              0.03505264 = score(doc=7397,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.21111822 = fieldWeight in 7397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7397)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    State of the art review exploring the problem of bibliographic citations to resources that exist only in electronic form where the cited items may no longer be locatable at the URL indicated. Notes that the Internet is currently in a state of near chaos in terms of access and organization, while searching, usually performed with word based search engines, is generally not adequate for the needs of most users. Reviews strategies used by librarians for cataloguing and classifying information resources on the Internet. Techniques used include: automatic classification projects and classified subject trees, like the BUBL Subject Tree; CyberDewey, and the WWW Virtual Library. Considers OPAC like library catalogues such as the UK's CATRIONA Project and OCLC's InterCat. Explores retrieval tools used with concept analysis and other non traditional proposals, which include some library expertise, usually the use of one of the major library classifications. Pays particular attention to the UDC
  17. Benoit, G.: Data mining (2002) 0.01
    0.00876316 = product of:
      0.01752632 = sum of:
        0.01752632 = product of:
          0.03505264 = sum of:
            0.03505264 = weight(_text_:classification in 4296) [ClassicSimilarity], result of:
              0.03505264 = score(doc=4296,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.21111822 = fieldWeight in 4296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4296)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data mining (DM) is a multistaged process of extracting previously unanticipated knowledge from large databases, and applying the results to decision making. Data mining tools detect patterns from the data and infer associations and rules from them. The extracted information may then be applied to prediction or classification models by identifying relations within the data records or between databases. Those patterns and rules can then guide decision making and forecast the effects of those decisions. However, this definition may be applied equally to "knowledge discovery in databases" (KDD). Indeed, in the recent literature of DM and KDD, a source of confusion has emerged, making it difficult to determine the exact parameters of both. KDD is sometimes viewed as the broader discipline, of which data mining is merely a component-specifically pattern extraction, evaluation, and cleansing methods (Raghavan, Deogun, & Sever, 1998, p. 397). Thurasingham (1999, p. 2) remarked that "knowledge discovery," "pattern discovery," "data dredging," "information extraction," and "knowledge mining" are all employed as synonyms for DM. Trybula, in his ARIST chapter an text mining, observed that the "existing work [in KDD] is confusing because the terminology is inconsistent and poorly defined.
  18. Fattahi, R.: Anglo American Cataloguing Rules in an online environment : a literature review (1995) 0.01
    0.00876316 = product of:
      0.01752632 = sum of:
        0.01752632 = product of:
          0.03505264 = sum of:
            0.03505264 = weight(_text_:classification in 596) [ClassicSimilarity], result of:
              0.03505264 = score(doc=596,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.21111822 = fieldWeight in 596, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=596)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Cataloging and classification quarterly. 20(1995) no.2, S.25-50
  19. Chen, A.-P.; Chen, M.-Y.: ¬A review of survey research in knowledge management performance (2005) 0.01
    0.00876316 = product of:
      0.01752632 = sum of:
        0.01752632 = product of:
          0.03505264 = sum of:
            0.03505264 = weight(_text_:classification in 3025) [ClassicSimilarity], result of:
              0.03505264 = score(doc=3025,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.21111822 = fieldWeight in 3025, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3025)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper surveys knowledge management (KM) development using a literature review and classification of articles from 1995 to 2004 with a keyword index and article abstract in order to explore how KM performance evaluation has developed during this period. Based on the scope of 76 articles from 78 academic journals of KM, this paper surveys and classifies KM measurements using the following eight categories: qualitative analysis, quantitative analysis, financial indicator analysis, non-financial indicator analysis, internal performance analysis, external performance analysis, project-oriented analysis, and organizational-oriented analysis together with their measurement matrices for different research and problem domains. Discussion is presented, indicating the followings future development directions for KM performance evaluation: (1) KM performance evaluation is getting more important. (2) The quantitative analysis is the primary methodology in KM performance evaluation. (3) Firms are now highlighting the KM performance of competitors, through benchmarking or best practices, rather than internally auditing KM performance via balanced scorecard. (4) Firms may begin to focus more on project management measurement, than on the entire organization.
  20. Börner, K.; Chen, C.; Boyack, K.W.: Visualizing knowledge domains (2002) 0.01
    0.005111843 = product of:
      0.010223686 = sum of:
        0.010223686 = product of:
          0.020447372 = sum of:
            0.020447372 = weight(_text_:classification in 4286) [ClassicSimilarity], result of:
              0.020447372 = score(doc=4286,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.12315229 = fieldWeight in 4286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4286)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter reviews visualization techniques that can be used to map the ever-growing domain structure of scientific disciplines and to support information retrieval and classification. In contrast to the comprehensive surveys conducted in traditional fashion by Howard White and Katherine McCain (1997, 1998), this survey not only reviews emerging techniques in interactive data analysis and information visualization, but also depicts the bibliographical structure of the field itself. The chapter starts by reviewing the history of knowledge domain visualization. We then present a general process flow for the visualization of knowledge domains and explain commonly used techniques. In order to visualize the domain reviewed by this chapter, we introduce a bibliographic data set of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, and visualization literatures. Using tutorial style, we then apply various algorithms to demonstrate the visualization effectsl produced by different approaches and compare the results. The domain visualizations reveal the relationships within and between the four fields that together constitute the focus of this chapter. We conclude with a general discussion of research possibilities. Painting a "big picture" of scientific knowledge has long been desirable for a variety of reasons. Traditional approaches are brute forcescholars must sort through mountains of literature to perceive the outlines of their field. Obviously, this is time-consuming, difficult to replicate, and entails subjective judgments. The task is enormously complex. Sifting through recently published documents to find those that will later be recognized as important is labor intensive. Traditional approaches struggle to keep up with the pace of information growth. In multidisciplinary fields of study it is especially difficult to maintain an overview of literature dynamics. Painting the big picture of an everevolving scientific discipline is akin to the situation described in the widely known Indian legend about the blind men and the elephant. As the story goes, six blind men were trying to find out what an elephant looked like. They touched different parts of the elephant and quickly jumped to their conclusions. The one touching the body said it must be like a wall; the one touching the tail said it was like a snake; the one touching the legs said it was like a tree trunk, and so forth. But science does not stand still; the steady stream of new scientific literature creates a continuously changing structure. The resulting disappearance, fusion, and emergence of research areas add another twist to the tale-it is as if the elephant is running and dynamically changing its shape. Domain visualization, an emerging field of study, is in a similar situation. Relevant literature is spread across disciplines that have traditionally had few connections. Researchers examining the domain from a particular discipline cannot possibly have an adequate understanding of the whole. As noted by White and McCain (1997), the new generation of information scientists is technically driven in its efforts to visualize scientific disciplines. However, limited progress has been made in terms of connecting pioneers' theories and practices with the potentialities of today's enabling technologies. If the difference between past and present generations lies in the power of available technologies, what they have in common is the ultimate goal-to reveal the development of scientific knowledge.

Types

  • a 47
  • b 22
  • el 3
  • m 3
  • r 2
  • More… Less…