Search (469 results, page 2 of 24)

  • × language_ss:"e"
  • × theme_ss:"Metadaten"
  • × type_ss:"a"
  1. White, H.: Examining scientific vocabulary : mapping controlled vocabularies with free text keywords (2013) 0.02
    0.022454113 = product of:
      0.03368117 = sum of:
        0.009195981 = weight(_text_:a in 1953) [ClassicSimilarity], result of:
          0.009195981 = score(doc=1953,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17652355 = fieldWeight in 1953, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1953)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 1953) [ClassicSimilarity], result of:
              0.048970375 = score(doc=1953,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 1953, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1953)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Scientific repositories create a new environment for studying traditional information science issues. The interaction between indexing terms provided by users and controlled vocabularies continues to be an area of debate and study. This article reports and analyzes findings from a study that mapped the relationships between free text keywords and controlled vocabulary terms used in the sciences. Based on this study's findings recommendations are made about which vocabularies may be better to use in scientific data repositories.
    Date
    29. 5.2015 19:09:22
    Type
    a
  2. Bueno-de-la-Fuente, G.; Hernández-Pérez, T.; Rodríguez-Mateos, D.; Méndez-Rodríguez, E.M.; Martín-Galán, B.: Study on the use of metadata for digital learning objects in University Institutional Repositories (MODERI) (2009) 0.02
    0.022192208 = product of:
      0.03328831 = sum of:
        0.0056313644 = weight(_text_:a in 2981) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=2981,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 2981, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2981)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 2981) [ClassicSimilarity], result of:
              0.055313893 = score(doc=2981,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 2981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2981)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Metadata is a core issue for the creation of repositories. Different institutional repositories have chosen and use different metadata models, elements and values for describing the range of digital objects they store. Thus, this paper analyzes the current use of metadata describing those Learning Objects that some open higher educational institutions' repositories include in their collections. The goal of this work is to identify and analyze the different metadata models being used to describe educational features of those specific digital educational objects (such as audience, type of educational material, learning objectives, etc.). Also discussed is the concept and typology of Learning Objects (LO) through their use in University Repositories. We will also examine the usefulness of specifically describing those learning objects, setting them apart from other kind of documents included in the repository, mainly scholarly publications and research results of the Higher Education institution.
    Type
    a
  3. Marchiori, M.: ¬The limits of Web metadata, and beyond (1998) 0.02
    0.021869322 = product of:
      0.032803982 = sum of:
        0.011379444 = weight(_text_:a in 3383) [ClassicSimilarity], result of:
          0.011379444 = score(doc=3383,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 3383, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3383)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 3383) [ClassicSimilarity], result of:
              0.04284908 = score(doc=3383,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 3383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3383)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Highlights 2 major problems of the WWW metadata: it will take some time before a reasonable number of people start using metadata to provide a better Web classification, and that no one can guarantee that a majority of the Web objects will be ever properly classified via metadata. Addresses the problem of how to cope with intrinsic limits of Web metadata, proposes a method to solve these problems and show evidence of its effectiveness. Examines the important problem of what is the required critical mass in the WWW for metadata in order for it to be really useful
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Type
    a
  4. White, H.C.; Carrier, S.; Thompson, A.; Greenberg, J.; Scherle, R.: ¬The Dryad Data Repository : a Singapore framework metadata architecture in a DSpace environment (2008) 0.02
    0.021869322 = product of:
      0.032803982 = sum of:
        0.011379444 = weight(_text_:a in 2592) [ClassicSimilarity], result of:
          0.011379444 = score(doc=2592,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 2592, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2592)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 2592) [ClassicSimilarity], result of:
              0.04284908 = score(doc=2592,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 2592, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2592)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This report presents recent metadata developments for Dryad, a digital repository hosting datasets underlying publications in the field of evolutionary biology. We review our efforts to bring the Dryad application profile into conformance with the Singapore Framework and discuss practical issues underlying the application profile implementation in a DSpace environment. The report concludes by outlining the next steps planned as Dryad moves into the next phase of development.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  5. McCallum, S.H.: ¬An introduction to the Metadata Object Description Schema (MODS) (2004) 0.02
    0.021329116 = product of:
      0.031993672 = sum of:
        0.0075084865 = weight(_text_:a in 81) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=81,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 81, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=81)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 81) [ClassicSimilarity], result of:
              0.048970375 = score(doc=81,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 81, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=81)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper provides an introduction to the Metadata Object Description Schema (MODS), a MARC21 compatible XML schema for descriptive metadata. It explains the requirements that the schema targets and the special features that differentiate it from MARC, such as user-oriented tags, regrouped data elements, linking, recursion, and accommodations for electronic resources.
    Source
    Library hi tech. 22(2004) no.1, S.82-88
    Type
    a
  6. Rogers, D.: Cataloguing Internet resources : the evolution of the Dublin Core metadata set (1997) 0.02
    0.021329116 = product of:
      0.031993672 = sum of:
        0.0075084865 = weight(_text_:a in 903) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=903,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 903, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=903)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 903) [ClassicSimilarity], result of:
              0.048970375 = score(doc=903,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 903, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=903)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Recently the view has developed that electronic resources require the same level of cataloguing as the physical resources found in libraries, with the effect that a number of guidelines for cataloguing Internet resources have appeared. Describes one such standard for resource description, the Dublin Core metadata set, the ongoing refinement of the metadata elements and the application of the Dublin Core metadata set
    Source
    Cataloguing Australia. 23(1997) nos.1/2, S.17-22
    Type
    a
  7. Hill, J.S.: Analog people for digital dreams : staffing and educational considerations for cataloging and metadata professionals (2005) 0.02
    0.021329116 = product of:
      0.031993672 = sum of:
        0.0075084865 = weight(_text_:a in 126) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=126,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 126, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=126)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 126) [ClassicSimilarity], result of:
              0.048970375 = score(doc=126,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 126, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=126)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    As libraries attempt to incorporate increasing amounts of electronic resources into their catalogs, utilizing a growing variety of metadata standards, library and information science programs are grappling with how to educate catalogers to meet these challenges. In this paper, an employer considers the characteristics and skills that catalogers will need and how they might acquire them.
    Date
    10. 9.2000 17:38:22
    Type
    a
  8. Alves dos Santos, E.; Mucheroni, M.L.: VIAF and OpenCitations : cooperative work as a strategy for information organization in the linked data era (2018) 0.02
    0.021329116 = product of:
      0.031993672 = sum of:
        0.0075084865 = weight(_text_:a in 4826) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=4826,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 4826, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4826)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 4826) [ClassicSimilarity], result of:
              0.048970375 = score(doc=4826,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 4826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4826)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    18. 1.2019 19:13:22
    Type
    a
  9. Liechti, O.; Sifer, M.J.; Ichikawa, T.: Structured graph format : XML metadata for describing Web site structure (1998) 0.02
    0.021208337 = product of:
      0.031812504 = sum of:
        0.010387965 = weight(_text_:a in 3597) [ClassicSimilarity], result of:
          0.010387965 = score(doc=3597,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19940455 = fieldWeight in 3597, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3597)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 3597) [ClassicSimilarity], result of:
              0.04284908 = score(doc=3597,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 3597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3597)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To improve searching, filtering and processing of information on the Web, a common effort is made in the direction of metadata, defined as machine understandable information about Web resources or other things. In particular, the eXtensible Markup Language (XML) aims at providing a common syntax to emerging metadata formats. Proposes the Structured Graph Format (SGF) an XML compliant markup language based on structured graphs, for capturing Web sites' structure. Presents SGMapper, a client-site tool, which aims to facilitate navigation in large Web sites by generating highly interactive site maps using SGF metadata
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Type
    a
  10. Warner, S.: E-prints and the Open Archives Initiative (2003) 0.02
    0.021208337 = product of:
      0.031812504 = sum of:
        0.010387965 = weight(_text_:a in 4772) [ClassicSimilarity], result of:
          0.010387965 = score(doc=4772,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19940455 = fieldWeight in 4772, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4772)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 4772) [ClassicSimilarity], result of:
              0.04284908 = score(doc=4772,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 4772, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4772)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Open Archives Initiative (OAI) was created as a practical way to promote interoperability between e-print repositories. Although the scope of the OAI has been broadened, e-print repositories still represent a significant fraction of OAI data providers. This article presents a brief survey of OAI e-print repositories, and of services using metadata harvested from e-print repositories using the OAI protocol for metadata harvesting (OAI-PMH). It then discusses several situations where metadata harvesting may be used to further improve the utility of e-print archives as a component of the scholarly communication infrastructure.
    Date
    18.12.2005 13:18:22
    Type
    a
  11. Brasethvik, T.: ¬A semantic modeling approach to metadata (1998) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 5165) [ClassicSimilarity], result of:
          0.009291277 = score(doc=5165,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 5165, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5165)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 5165) [ClassicSimilarity], result of:
              0.04284908 = score(doc=5165,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 5165, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5165)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    States that heterogeneous project groups today may be expected to use the mechanisms of the Web for sharing information. Metadata has been proposed as a mechanism for expressing the semantics of information and, hence, facilitate information retrieval, understanding and use. Presents an approach to sharing information which aims to use a semantic modeling language as the basis for expressing the semantics of information and designing metadata schemes. Functioning on the borderline between human and computer understandability, the modeling language would be able to express the semantics of published Web documents. Reporting on work in progress, presents the overall framework and ideas
    Date
    9. 9.2000 17:22:23
    Type
    a
  12. Kent, R.E.: Organizing conceptual knowledge online : metadata interoperability and faceted classification (1998) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 57) [ClassicSimilarity], result of:
          0.009291277 = score(doc=57,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 57, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=57)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.04284908 = score(doc=57,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Conceptual Knowledge Markup Language (CKML), an application of XML, is a new standard being promoted for the specification of online conceptual knowledge (Kent and Shrivastava, 1998). CKML follows the philosophy of Conceptual Knowledge Processing (Wille, 1982), a principled approach to knowledge representation and data analysis, which advocates the development of methodologies and techniques to support people in their rational thinking, judgement and actions. CKML was developed and is being used in the WAVE networked information discovery and retrieval system (Kent and Neuss, 1994) as a standard for the specification of conceptual knowledge
    Date
    30.12.2001 16:22:41
    Type
    a
  13. Guenther, R.S.: Using the Metadata Object Description Schema (MODS) for resource description : guidelines and applications (2004) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 2837) [ClassicSimilarity], result of:
          0.009291277 = score(doc=2837,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 2837, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2837)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 2837) [ClassicSimilarity], result of:
              0.04284908 = score(doc=2837,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 2837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2837)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper describes the Metadata Object Description Schema (MODS), its accompanying documentation and some of its applications. It reviews the MODS user guidelines provided by the Library of Congress and how they enable a user of the schema to consistently apply MODS as a metadata scheme. Because the schema itself could not fully document appropriate usage, the guidelines provide element definitions, history, relationships with other elements, usage conventions, and examples. Short descriptions of some MODS applications are given and a more detailed discussion of its use in the Library of Congress's Minerva project for Web archiving is given.
    Source
    Library hi tech. 22(2004) no.1, S.89-98
    Type
    a
  14. Eden, B.L.: Metadata and librarianship : will MARC survive? (2004) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 4750) [ClassicSimilarity], result of:
          0.009291277 = score(doc=4750,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 4750, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4750)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 4750) [ClassicSimilarity], result of:
              0.04284908 = score(doc=4750,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 4750, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4750)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Metadata schema and standards are now a part of the information landscape. Librarianship has slowly realized that MARC is only one of a proliferation of metadata standards, and that MARC has many pros and cons related to its age, original conception, and biases. Should librarianship continue to promote the MARC standard? Are there better metadata standards out there that are more robust, user-friendly, and dynamic in the organization and presentation of information? This special issue examines current initiatives that are actively incorporating MARC standards and concepts into new metadata schemata, while also predicting a future where MARC may not be the metadata schema of choice for the organization and description of information.
    Source
    Library hi tech. 22(2004) no.1, S.6-7
    Type
    a
  15. Vellucci, S.L.: Metadata and authority control (2000) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 180) [ClassicSimilarity], result of:
          0.009291277 = score(doc=180,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 180, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=180)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 180) [ClassicSimilarity], result of:
              0.04284908 = score(doc=180,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 180, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=180)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A variety of information communities have developed metadata schemes to meet the needs of their own users. The ability of libraries to incorporate and use multiple metadata schemes in current library systems will depend on the compatibility of imported data with existing catalog data. Authority control will play an important role in metadata interoperability. In this article, I discuss factors for successful authority control in current library catalogs, which include operation in a well-defined and bounded universe, application of principles and standard practices to access point creation, reference to authoritative lists, and bibliographic record creation by highly trained individuals. Metadata characteristics and environmental models are examined and the likelihood of successful authority control is explored for a variety of metadata environments.
    Date
    10. 9.2000 17:38:22
    Type
    a
  16. Wusteman, J.: Whither HTML? (2004) 0.02
    0.019862993 = product of:
      0.029794488 = sum of:
        0.0053093014 = weight(_text_:a in 1001) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=1001,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 1001, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1001)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 1001) [ClassicSimilarity], result of:
              0.048970375 = score(doc=1001,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 1001, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1001)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Library hi tech. 22(2004) no.1, S.99-105
    Type
    a
  17. Gardner, T.; Iannella, R.: Architecture and software solutions (2000) 0.02
    0.019862993 = product of:
      0.029794488 = sum of:
        0.0053093014 = weight(_text_:a in 4867) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=4867,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 4867, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4867)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 4867) [ClassicSimilarity], result of:
              0.048970375 = score(doc=4867,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 4867, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4867)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 6.2002 19:38:24
    Type
    a
  18. Méndez, E.; López, L.M.; Siches, A.; Bravo, A.G.: DCMF: DC & Microformats, a good marriage (2008) 0.02
    0.01975108 = product of:
      0.02962662 = sum of:
        0.011262729 = weight(_text_:a in 2634) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2634,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2634, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2634)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 2634) [ClassicSimilarity], result of:
              0.03672778 = score(doc=2634,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 2634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2634)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This report introduces the Dublin Core Microformats (DCMF) project, a new way to use the DC element set within X/HTML. The DC microformats encode explicit semantic expressions in an X/HTML webpage, by using a specific list of terms for values of the attributes "rev" and "rel" for <a> and <link> elements, and "class" and "id" of other elements. Microformats can be easily processed by user agents and software, enabling a high level of interoperability. These characteristics are crucial for the growing number of social applications allowing users to participate in the Web 2.0 environment as information creators and consumers. This report reviews the origins of microformats; illustrates the coding of DC microformats using the Dublin Core Metadata Gen tool, and a Firefox extension for extraction and visualization; and discusses the benefits of creating Web services utilizing DC microformats.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  19. Margaritopoulos, T.; Margaritopoulos, M.; Mavridis, I.; Manitsaris, A.: ¬A conceptual framework for metadata quality assessment (2008) 0.02
    0.01975108 = product of:
      0.02962662 = sum of:
        0.011262729 = weight(_text_:a in 2643) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2643,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2643, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2643)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 2643) [ClassicSimilarity], result of:
              0.03672778 = score(doc=2643,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 2643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Metadata quality of digital resources in a repository is an issue directly associated with the repository's efficiency and value. In this paper, the subject of metadata quality is approached by introducing a new conceptual framework that defines it in terms of its fundamental components. Additionally, a method for assessing these components by exploiting structural and semantic relations among the resources is presented. These relations can be used to generate implied logic rules, which include, impose or prohibit certain values in the fields of a metadata record. The use of such rules can serve as a tool for conducting quality control in the records, in order to diagnose deficiencies and errors.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  20. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.02
    0.019647349 = product of:
      0.029471021 = sum of:
        0.008046483 = weight(_text_:a in 2673) [ClassicSimilarity], result of:
          0.008046483 = score(doc=2673,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1544581 = fieldWeight in 2673, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.04284908 = score(doc=2673,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
    Type
    a

Years

Types

  • el 48
  • b 2
  • More… Less…