Search (513 results, page 26 of 26)

  • × language_ss:"e"
  • × theme_ss:"Metadaten"
  1. Managing metadata in web-scale discovery systems (2016) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 3336) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=3336,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 3336, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3336)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book shows you how to harness the power of linked data and web-scale discovery systems to manage and link widely varied content across your library collection. Libraries are increasingly using web-scale discovery systems to help clients find a wide assortment of library materials, including books, journal articles, special collections, archival collections, videos, music and open access collections. Depending on the library material catalogued, the discovery system might need to negotiate different metadata standards, such as AACR, RDA, RAD, FOAF, VRA Core, METS, MODS, RDF and more. In Managing Metadata in Web-Scale Discovery Systems, editor Louise Spiteri and a range of international experts show you how to: * maximize the effectiveness of web-scale discovery systems * provide a smooth and seamless discovery experience to your users * help users conduct searches that yield relevant results * manage the sheer volume of items to which you can provide access, so your users can actually find what they need * maintain shared records that reflect the needs, languages, and identities of culturally and ethnically varied communities * manage metadata both within, across, and outside, library discovery tools by converting your library metadata to linked open data that all systems can access * manage user generated metadata from external services such as Goodreads and LibraryThing * mine user generated metadata to better serve your users in areas such as collection development or readers' advisory. The book will be essential reading for cataloguers, technical services and systems librarians and library and information science students studying modules on metadata, cataloguing, systems design, data management, and digital libraries. The book will also be of interest to those managing metadata in archives, museums and other cultural heritage institutions.
  2. Pomerantz, J.: Metadata (2015) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 3800) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=3800,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 3800, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3800)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    When "metadata" became breaking news, appearing in stories about surveillance by the National Security Agency, many members of the public encountered this once-obscure term from information science for the first time. Should people be reassured that the NSA was "only" collecting metadata about phone calls -- information about the caller, the recipient, the time, the duration, the location -- and not recordings of the conversations themselves? Or does phone call metadata reveal more than it seems? In this book, Jeffrey Pomerantz offers an accessible and concise introduction to metadata. In the era of ubiquitous computing, metadata has become infrastructural, like the electrical grid or the highway system. We interact with it or generate it every day. It is not, Pomerantz tell us, just "data about data." It is a means by which the complexity of an object is represented in a simpler form. For example, the title, the author, and the cover art are metadata about a book. When metadata does its job well, it fades into the background; everyone (except perhaps the NSA) takes it for granted. Pomerantz explains what metadata is, and why it exists. He distinguishes among different types of metadata -- descriptive, administrative, structural, preservation, and use -- and examines different users and uses of each type. He discusses the technologies that make modern metadata possible, and he speculates about metadata's future. By the end of the book, readers will see metadata everywhere. Because, Pomerantz warns us, it's metadata's world, and we are just living in it.
  3. Gracy, K.F.: Enriching and enhancing moving images with Linked Data : an exploration in the alignment of metadata models (2018) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 4200) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=4200,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 4200, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4200)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper is to examine the current state of Linked Data (LD) in archival moving image description, and propose ways in which current metadata records can be enriched and enhanced by interlinking such metadata with relevant information found in other data sets. Design/methodology/approach Several possible metadata models for moving image production and archiving are considered, including models from records management, digital curation, and the recent BIBFRAME AV Modeling Study. This research also explores how mappings between archival moving image records and relevant external data sources might be drawn, and what gaps exist between current vocabularies and what is needed to record and make accessible the full lifecycle of archiving through production, use, and reuse. Findings The author notes several major impediments to implementation of LD for archival moving images. The various pieces of information about creators, places, and events found in moving image records are not easily connected to relevant information in other sources because they are often not semantically defined within the record and can be hidden in unstructured fields. Libraries, archives, and museums must work on aligning the various vocabularies and schemas of potential value for archival moving image description to enable interlinking between vocabularies currently in use and those which are used by external data sets. Alignment of vocabularies is often complicated by mismatches in granularity between vocabularies. Research limitations/implications The focus is on how these models inform functional requirements for access and other archival activities, and how the field might benefit from having a common metadata model for critical archival descriptive activities. Practical implications By having a shared model, archivists may more easily align current vocabularies and develop new vocabularies and schemas to address the needs of moving image data creators and scholars. Originality/value Moving image archives, like other cultural institutions with significant heritage holdings, can benefit tremendously from investing in the semantic definition of information found in their information databases. While commercial entities such as search engines and data providers have already embraced the opportunities that semantic search provides for resource discovery, most non-commercial entities are just beginning to do so. Thus, this research addresses the benefits and challenges of enriching and enhancing archival moving image records with semantically defined information via LD.
    Type
    a
  4. Chen, J.; Wang, D.; Xie, I.; Lu, Q.: Image annotation tactics : transitions, strategies and efficiency (2018) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 5046) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=5046,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 5046, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5046)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Human interpretation of images during image annotation is complicated, but most existing interactive image annotation systems are generally operated based on social tagging, while ignoring that tags are insufficient to convey image semantics. Hence, it is critical to study the nature of image annotation behaviors and process. This study investigated annotation tactics, transitions, strategies and their efficiency during the image annotation process. A total of 90 participants were recruited to annotate nine pictures in three emotional dimensions with three interactive annotation methods. Data collected from annotation logs and verbal protocols were analyzed by applying both qualitative and quantitative methods. The findings of this study show that the cognitive process of human interpretation of images is rather complex, which reveals a probable bias in research involving image relevance feedback. Participants preferred applying scroll bar (Scr) and image comparison (Cim) tactics comparing with rating tactic (Val), and they did fewer fine tuning activities, which reflects the influence of perceptual level and users' cognitive load during image annotation. Annotation tactic transition analysis showed that Cim was more likely to be adopted at the beginning of each phase, and the most remarkable transition was from Cim to Scr. By applying sequence analysis, the authors found 10 most commonly used sequences representing four types of annotation strategies, including Single tactic strategy, Tactic combination strategy, Fix mode strategy and Shift mode strategy. Furthermore, two patterns, "quarter decreasing" and "transition cost," were identified based on time data, and both multiple tactics (e.g., the combination of Cim and Scr) and fine tuning activities were recognized as efficient tactic applications. Annotation patterns found in this study suggest more research needs to be done considering the need for multi-interactive methods and their influence. The findings of this study generated detailed and useful guidance for the interactive design in image annotation systems, including recommending efficient tactic applications in different phases, highlighting the most frequently applied tactics and transitions, and avoiding unnecessary transitions.
    Type
    a
  5. Korb, N.; Wollschläger, T.: Koordinierungsstelle DissOnline auf dem 2. Bibliothekskongress in Leipzig : Strategien zur Lösung von technischen und Rechtsfragen bei Online-Hochschulschriften (2004) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 2385) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=2385,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 2385, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2385)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Graham, R.A.: Metadata harvesting (2001) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4807) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4807,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4807, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4807)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Leong, J.H.-t.: ¬The convergence of metadata and bibliographic control? : trends and patterns in addressing the current issues and challenges of providing subject access (2010) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 3355) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=3355,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 3355, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Ruhl, M.: Do we need metadata? : an on-line survey in German archives (2012) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 471) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=471,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Proceedings of the 2nd International Workshop on Semantic Digital Archives held in conjunction with the 16th Int. Conference on Theory and Practice of Digital Libraries (TPDL) on September 27, 2012 in Paphos, Cyprus [http://ceur-ws.org/Vol-912/proceedings.pdf]. Eds.: A. Mitschik et al
  9. Biesenbender, S.; Tobias, R.: Rolle und Aufgaben von Bibliotheken im Umfeld des Kerndatensatz Forschung (2019) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 5350) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=5350,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 5350, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5350)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Christel, M.G.: Automated metadata in multimedia information systems : creation, refinement, use in surrogates, and evaluation (2009) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3086) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3086,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3086, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3086)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Improvements in network bandwidth along with dramatic drops in digital storage and processing costs have resulted in the explosive growth of multimedia (combinations of text, image, audio, and video) resources on the Internet and in digital repositories. A suite of computer technologies delivering speech, image, and natural language understanding can automatically derive descriptive metadata for such resources. Difficulties for end users ensue, however, with the tremendous volume and varying quality of automated metadata for multimedia information systems. This lecture surveys automatic metadata creation methods for dealing with multimedia information resources, using broadcast news, documentaries, and oral histories as examples. Strategies for improving the utility of such metadata are discussed, including computationally intensive approaches, leveraging multimodal redundancy, folding in context, and leaving precision-recall tradeoffs under user control. Interfaces building from automatically generated metadata are presented, illustrating the use of video surrogates in multimedia information systems. Traditional information retrieval evaluation is discussed through the annual National Institute of Standards and Technology TRECVID forum, with experiments on exploratory search extending the discussion beyond fact-finding to broader, longer term search activities of learning, analysis, synthesis, and discovery.
  11. Montenegro, M.: Subverting the universality of metadata standards (2019) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 5340) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=5340,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 5340, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5340)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Qin, C.; Liu, Y.; Ma, X.; Chen, J.; Liang, H.: Designing for serendipity in online knowledge communities : an investigation of tag presentation formats and openness to experience (2022) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 664) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=664,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Schroeder, K.: Persistent Identifiers im Kontext der Langzeitarchivierung : EPICUR auf dem 2. Bibliothekskongress in Leipzig (2004) 0.00
    6.765375E-4 = product of:
      0.001353075 = sum of:
        0.001353075 = product of:
          0.00270615 = sum of:
            0.00270615 = weight(_text_:a in 2787) [ClassicSimilarity], result of:
              0.00270615 = score(doc=2787,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.050957955 = fieldWeight in 2787, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2787)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Years

Types

  • a 469
  • el 66
  • m 19
  • s 13
  • n 3
  • b 2
  • x 1
  • More… Less…

Subjects