Search (5 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"m"
  1. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.02
    0.018672243 = product of:
      0.046680607 = sum of:
        0.02691025 = weight(_text_:index in 6) [ClassicSimilarity], result of:
          0.02691025 = score(doc=6,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.14483857 = fieldWeight in 6, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
        0.01977036 = weight(_text_:system in 6) [ClassicSimilarity], result of:
          0.01977036 = score(doc=6,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.14763528 = fieldWeight in 6, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
      0.4 = coord(2/5)
    
    Content
    Inhalt: Chapter 1. Introduction to Web Search Engines: 1.1 A Short History of Information Retrieval - 1.2 An Overview of Traditional Information Retrieval - 1.3 Web Information Retrieval Chapter 2. Crawling, Indexing, and Query Processing: 2.1 Crawling - 2.2 The Content Index - 2.3 Query Processing Chapter 3. Ranking Webpages by Popularity: 3.1 The Scene in 1998 - 3.2 Two Theses - 3.3 Query-Independence Chapter 4. The Mathematics of Google's PageRank: 4.1 The Original Summation Formula for PageRank - 4.2 Matrix Representation of the Summation Equations - 4.3 Problems with the Iterative Process - 4.4 A Little Markov Chain Theory - 4.5 Early Adjustments to the Basic Model - 4.6 Computation of the PageRank Vector - 4.7 Theorem and Proof for Spectrum of the Google Matrix Chapter 5. Parameters in the PageRank Model: 5.1 The a Factor - 5.2 The Hyperlink Matrix H - 5.3 The Teleportation Matrix E Chapter 6. The Sensitivity of PageRank; 6.1 Sensitivity with respect to alpha - 6.2 Sensitivity with respect to H - 6.3 Sensitivity with respect to vT - 6.4 Other Analyses of Sensitivity - 6.5 Sensitivity Theorems and Proofs Chapter 7. The PageRank Problem as a Linear System: 7.1 Properties of (I - alphaS) - 7.2 Properties of (I - alphaH) - 7.3 Proof of the PageRank Sparse Linear System Chapter 8. Issues in Large-Scale Implementation of PageRank: 8.1 Storage Issues - 8.2 Convergence Criterion - 8.3 Accuracy - 8.4 Dangling Nodes - 8.5 Back Button Modeling
  2. Cross-language information retrieval (1998) 0.02
    0.015560204 = product of:
      0.03890051 = sum of:
        0.022425208 = weight(_text_:index in 6299) [ClassicSimilarity], result of:
          0.022425208 = score(doc=6299,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.12069881 = fieldWeight in 6299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.01953125 = fieldNorm(doc=6299)
        0.016475301 = weight(_text_:system in 6299) [ClassicSimilarity], result of:
          0.016475301 = score(doc=6299,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.12302941 = fieldWeight in 6299, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.01953125 = fieldNorm(doc=6299)
      0.4 = coord(2/5)
    
    Content
    Enthält die Beiträge: GREFENSTETTE, G.: The Problem of Cross-Language Information Retrieval; DAVIS, M.W.: On the Effective Use of Large Parallel Corpora in Cross-Language Text Retrieval; BALLESTEROS, L. u. W.B. CROFT: Statistical Methods for Cross-Language Information Retrieval; Distributed Cross-Lingual Information Retrieval; Automatic Cross-Language Information Retrieval Using Latent Semantic Indexing; EVANS, D.A. u.a.: Mapping Vocabularies Using Latent Semantics; PICCHI, E. u. C. PETERS: Cross-Language Information Retrieval: A System for Comparable Corpus Querying; YAMABANA, K. u.a.: A Language Conversion Front-End for Cross-Language Information Retrieval; GACHOT, D.A. u.a.: The Systran NLP Browser: An Application of Machine Translation Technology in Cross-Language Information Retrieval; HULL, D.: A Weighted Boolean Model for Cross-Language Text Retrieval; SHERIDAN, P. u.a. Building a Large Multilingual Test Collection from Comparable News Documents; OARD; D.W. u. B.J. DORR: Evaluating Cross-Language Text Filtering Effectiveness
    Footnote
    Rez. in: Machine translation review: 1999, no.10, S.26-27 (D. Lewis): "Cross Language Information Retrieval (CLIR) addresses the growing need to access large volumes of data across language boundaries. The typical requirement is for the user to input a free form query, usually a brief description of a topic, into a search or retrieval engine which returns a list, in ranked order, of documents or web pages that are relevant to the topic. The search engine matches the terms in the query to indexed terms, usually keywords previously derived from the target documents. Unlike monolingual information retrieval, CLIR requires query terms in one language to be matched to indexed terms in another. Matching can be done by bilingual dictionary lookup, full machine translation, or by applying statistical methods. A query's success is measured in terms of recall (how many potentially relevant target documents are found) and precision (what proportion of documents found are relevant). Issues in CLIR are how to translate query terms into index terms, how to eliminate alternative translations (e.g. to decide that French 'traitement' in a query means 'treatment' and not 'salary'), and how to rank or weight translation alternatives that are retained (e.g. how to order the French terms 'aventure', 'business', 'affaire', and 'liaison' as relevant translations of English 'affair'). Grefenstette provides a lucid and useful overview of the field and the problems. The volume brings together a number of experiments and projects in CLIR. Mark Davies (New Mexico State University) describes Recuerdo, a Spanish retrieval engine which reduces translation ambiguities by scanning indexes for parallel texts; it also uses either a bilingual dictionary or direct equivalents from a parallel corpus in order to compare results for queries on parallel texts. Lisa Ballesteros and Bruce Croft (University of Massachusetts) use a 'local feedback' technique which automatically enhances a query by adding extra terms to it both before and after translation; such terms can be derived from documents known to be relevant to the query.
    The retrieved output from a query including the phrase 'big rockets' may be, for instance, a sentence containing 'giant rocket' which is semantically ranked above 'military ocket'. David Hull (Xerox Research Centre, Grenoble) describes an implementation of a weighted Boolean model for Spanish-English CLIR. Users construct Boolean-type queries, weighting each term in the query, which is then translated by an on-line dictionary before being applied to the database. Comparisons with the performance of unweighted free-form queries ('vector space' models) proved encouraging. Two contributions consider the evaluation of CLIR systems. In order to by-pass the time-consuming and expensive process of assembling a standard collection of documents and of user queries against which the performance of an CLIR system is manually assessed, Páriac Sheridan et al (ETH Zurich) propose a method based on retrieving 'seed documents'. This involves identifying a unique document in a database (the 'seed document') and, for a number of queries, measuring how fast it is retrieved. The authors have also assembled a large database of multilingual news documents for testing purposes. By storing the (fairly short) documents in a structured form tagged with descriptor codes (e.g. for topic, country and area), the test suite is easily expanded while remaining consistent for the purposes of testing. Douglas Ouard and Bonne Dorr (University of Maryland) describe an evaluation methodology which appears to apply LSI techniques in order to filter and rank incoming documents designed for testing CLIR systems. The volume provides the reader an excellent overview of several projects in CLIR. It is well supported with references and is intended as a secondary text for researchers and practitioners. It highlights the need for a good, general tutorial introduction to the field."
  3. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.01
    0.0071760663 = product of:
      0.03588033 = sum of:
        0.03588033 = weight(_text_:index in 7) [ClassicSimilarity], result of:
          0.03588033 = score(doc=7,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.1931181 = fieldWeight in 7, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
      0.2 = coord(1/5)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
  4. Lavrenko, V.: ¬A generative theory of relevance (2009) 0.00
    0.0046599186 = product of:
      0.023299592 = sum of:
        0.023299592 = weight(_text_:system in 3306) [ClassicSimilarity], result of:
          0.023299592 = score(doc=3306,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 3306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3306)
      0.2 = coord(1/5)
    
    Abstract
    A modern information retrieval system must have the capability to find, organize and present very different manifestations of information - such as text, pictures, videos or database records - any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive, is actually hard to define, and it's even harder to model in a formal way. Lavrenko does not attempt to bring forth a new definition of relevance, nor provide arguments as to why any particular definition might be theoretically superior or more complete. Instead, he takes a widely accepted, albeit somewhat conservative definition, makes several assumptions, and from them develops a new probabilistic model that explicitly captures that notion of relevance. With this book, he makes two major contributions to the field of information retrieval: first, a new way to look at topical relevance, complementing the two dominant models, i.e., the classical probabilistic model and the language modeling approach, and which explicitly combines documents, queries, and relevance in a single formalism; second, a new method for modeling exchangeable sequences of discrete random variables which does not make any structural assumptions about the data and which can also handle rare events. Thus his book is of major interest to researchers and graduate students in information retrieval who specialize in relevance modeling, ranking algorithms, and language modeling.
  5. Dominich, S.: Mathematical foundations of information retrieval (2001) 0.00
    0.0019202124 = product of:
      0.009601062 = sum of:
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 1753) [ClassicSimilarity], result of:
              0.028803186 = score(doc=1753,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 1753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1753)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 3.2008 12:26:32