Search (94 results, page 1 of 5)

  • × language_ss:"e"
  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[1990 TO 2000}
  1. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.05
    0.05015035 = product of:
      0.14042097 = sum of:
        0.044992477 = weight(_text_:wide in 1319) [ClassicSimilarity], result of:
          0.044992477 = score(doc=1319,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.342674 = fieldWeight in 1319, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.042278 = weight(_text_:web in 1319) [ClassicSimilarity], result of:
          0.042278 = score(doc=1319,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43716836 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.014125523 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
          0.014125523 = score(doc=1319,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27153665 = fieldWeight in 1319, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.029656855 = weight(_text_:retrieval in 1319) [ClassicSimilarity], result of:
          0.029656855 = score(doc=1319,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.33085006 = fieldWeight in 1319, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.028104367 = score(doc=1319,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.33333334 = coord(1/3)
      0.35714287 = coord(5/14)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  2. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (1999) 0.05
    0.045362566 = product of:
      0.15876897 = sum of:
        0.054539118 = weight(_text_:wide in 5777) [ClassicSimilarity], result of:
          0.054539118 = score(doc=5777,freq=4.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.4153836 = fieldWeight in 5777, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.041844364 = weight(_text_:web in 5777) [ClassicSimilarity], result of:
          0.041844364 = score(doc=5777,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 5777, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.01482871 = weight(_text_:information in 5777) [ClassicSimilarity], result of:
          0.01482871 = score(doc=5777,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2850541 = fieldWeight in 5777, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.04755677 = weight(_text_:retrieval in 5777) [ClassicSimilarity], result of:
          0.04755677 = score(doc=5777,freq=14.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.5305404 = fieldWeight in 5777, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
      0.2857143 = coord(4/14)
    
    Abstract
    This book discusses many of the key design issues for building search engines and emphazises the important role that applied mathematics can play in improving information retrieval. The authors discuss not only important data structures, algorithms, and software but also user-centered issues such as interfaces, manual indexing, and document preparation. They also present some of the current problems in information retrieval that many not be familiar to applied mathematicians and computer scientists and some of the driving computational methods (SVD, SDD) for automated conceptual indexing
    LCSH
    Web search engines
    RSWK
    Suchmaschine / Information Retrieval
    World Wide Web / Suchmaschine / Mathematisches Modell (BVB)
    Suchmaschine / Information Retrieval / Mathematisches Modell (HEBIS)
    Subject
    Suchmaschine / Information Retrieval
    World Wide Web / Suchmaschine / Mathematisches Modell (BVB)
    Suchmaschine / Information Retrieval / Mathematisches Modell (HEBIS)
    Web search engines
  3. Kantor, P.; Kim, M.H.; Ibraev, U.; Atasoy, K.: Estimating the number of relevant documents in enormous collections (1999) 0.02
    0.02309879 = product of:
      0.08084576 = sum of:
        0.032137483 = weight(_text_:wide in 6690) [ClassicSimilarity], result of:
          0.032137483 = score(doc=6690,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 6690, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6690)
        0.017435152 = weight(_text_:web in 6690) [ClassicSimilarity], result of:
          0.017435152 = score(doc=6690,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 6690, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6690)
        0.010089659 = weight(_text_:information in 6690) [ClassicSimilarity], result of:
          0.010089659 = score(doc=6690,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 6690, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6690)
        0.021183468 = weight(_text_:retrieval in 6690) [ClassicSimilarity], result of:
          0.021183468 = score(doc=6690,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 6690, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6690)
      0.2857143 = coord(4/14)
    
    Abstract
    In assessing information retrieval systems, it is important to know not only the precision of the retrieved set, but also to compare the number of retrieved relevant items to the total number of relevant items. For large collections, such as the TREC test collections, or the World Wide Web, it is not possible to enumerate the entire set of relevant documents. If the retrieved documents are evaluated, a variant of the statistical "capture-recapture" method can be used to estimate the total number of relevant documents, providing the several retrieval systems used are sufficiently independent. We show that the underlying signal detection model supporting such an analysis can be extended in two ways. First, assuming that there are two distinct performance characteristics (corresponding to the chance of retrieving a relevant, and retrieving a given non-relevant document), we show that if there are three or more independent systems available it is possible to estimate the number of relevant documents without actually having to decide whether each individual document is relevant. We report applications of this 3-system method to the TREC data, leading to the conclusion that the independence assumptions are not satisfied. We then extend the model to a multi-system, multi-problem model, and show that it is possible to include statistical dependencies of all orders in the model, and determine the number of relevant documents for each of the problems in the set. Application to the TREC setting will be presented
    Imprint
    Medford, NJ : Information Today
    Series
    Proceedings of the American Society for Information Science; vol.36
    Source
    Knowledge: creation, organization and use. Proceedings of the 62nd Annual Meeting of the American Society for Information Science, 31.10.-4.11.1999. Ed.: L. Woods
  4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment (1998) 0.01
    0.014994139 = product of:
      0.06997265 = sum of:
        0.03856498 = weight(_text_:wide in 5) [ClassicSimilarity], result of:
          0.03856498 = score(doc=5,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 5, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=5)
        0.020922182 = weight(_text_:web in 5) [ClassicSimilarity], result of:
          0.020922182 = score(doc=5,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 5, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5)
        0.0104854815 = weight(_text_:information in 5) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=5,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 5, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5)
      0.21428572 = coord(3/14)
    
    Abstract
    The network structure of a hyperlinked environment can be a rich source of information about the content of the environment, provided we have effective means for understanding it. We develop a set of algorithmic tools for extracting information from the link structures of such environments, and report on experiments that demonstrate their effectiveness in a variety of contexts on the World Wide Web. The central issue we address within our framework is the distillation of broad search topics, through the discovery of "authoritative" information sources on such topics. We propose and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of "hub pages" that join them together in the link structure. Our formulation has connections to the eigenvectors of certain matrices associated with the link graph; these connections in turn motivate additional heuristics for link-based analysis.
  5. Faloutsos, C.: Signature files (1992) 0.01
    0.012919094 = product of:
      0.060289107 = sum of:
        0.008071727 = weight(_text_:information in 3499) [ClassicSimilarity], result of:
          0.008071727 = score(doc=3499,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 3499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.041510954 = weight(_text_:retrieval in 3499) [ClassicSimilarity], result of:
          0.041510954 = score(doc=3499,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46309367 = fieldWeight in 3499, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.010706427 = product of:
          0.032119278 = sum of:
            0.032119278 = weight(_text_:22 in 3499) [ClassicSimilarity], result of:
              0.032119278 = score(doc=3499,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.30952093 = fieldWeight in 3499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3499)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Presents a survey and discussion on signature-based text retrieval methods. It describes the main idea behind the signature approach and its advantages over other text retrieval methods, it provides a classification of the signature methods that have appeared in the literature, it describes the main representatives of each class, together with the relative advantages and drawbacks, and it gives a list of applications as well as commercial or university prototypes that use the signature approach
    Date
    7. 5.1999 15:22:48
    Source
    Information retrieval: data structures and algorithms. Ed.: W.B. Frakes u. R. Baeza-Yates
  6. Burgin, R.: ¬The retrieval effectiveness of 5 clustering algorithms as a function of indexing exhaustivity (1995) 0.01
    0.011593561 = product of:
      0.05410328 = sum of:
        0.0050448296 = weight(_text_:information in 3365) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3365,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3365)
        0.042366937 = weight(_text_:retrieval in 3365) [ClassicSimilarity], result of:
          0.042366937 = score(doc=3365,freq=16.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.47264296 = fieldWeight in 3365, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3365)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3365) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3365,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3365)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    The retrieval effectiveness of 5 hierarchical clustering methods (single link, complete link, group average, Ward's method, and weighted average) is examined as a function of indexing exhaustivity with 4 test collections (CR, Cranfield, Medlars, and Time). Evaluations of retrieval effectiveness, based on 3 measures of optimal retrieval performance, confirm earlier findings that the performance of a retrieval system based on single link clustering varies as a function of indexing exhaustivity but fail ti find similar patterns for other clustering methods. The data also confirm earlier findings regarding the poor performance of single link clustering is a retrieval environment. The poor performance of single link clustering appears to derive from that method's tendency to produce a small number of large, ill defined document clusters. By contrast, the data examined here found the retrieval performance of the other clustering methods to be general comparable. The data presented also provides an opportunity to examine the theoretical limits of cluster based retrieval and to compare these theoretical limits to the effectiveness of operational implementations. Performance standards of the 4 document collections examined were found to vary widely, and the effectiveness of operational implementations were found to be in the range defined as unacceptable. Further improvements in search strategies and document representations warrant investigations
    Date
    22. 2.1996 11:20:06
    Source
    Journal of the American Society for Information Science. 46(1995) no.8, S.562-572
  7. Baeza-Yates, R.A.: Introduction to data structures and algorithms related to information retrieval (1992) 0.01
    0.011442174 = product of:
      0.08009522 = sum of:
        0.020179318 = weight(_text_:information in 3082) [ClassicSimilarity], result of:
          0.020179318 = score(doc=3082,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.38790947 = fieldWeight in 3082, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3082)
        0.059915897 = weight(_text_:retrieval in 3082) [ClassicSimilarity], result of:
          0.059915897 = score(doc=3082,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.6684181 = fieldWeight in 3082, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=3082)
      0.14285715 = coord(2/14)
    
    Abstract
    In this chapter we review the main concepts and data structures used in information retrieval, and we classify information retrieval related algorithms
    Source
    Information retrieval: data structures and algorithms. Ed.: W.B. Frakes u. R. Baeza-Yates
  8. Cross-language information retrieval (1998) 0.01
    0.010310044 = product of:
      0.048113536 = sum of:
        0.008717576 = weight(_text_:web in 6299) [ClassicSimilarity], result of:
          0.008717576 = score(doc=6299,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.09014259 = fieldWeight in 6299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=6299)
        0.009438012 = weight(_text_:information in 6299) [ClassicSimilarity], result of:
          0.009438012 = score(doc=6299,freq=28.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.18142805 = fieldWeight in 6299, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=6299)
        0.029957948 = weight(_text_:retrieval in 6299) [ClassicSimilarity], result of:
          0.029957948 = score(doc=6299,freq=32.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.33420905 = fieldWeight in 6299, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=6299)
      0.21428572 = coord(3/14)
    
    Content
    Enthält die Beiträge: GREFENSTETTE, G.: The Problem of Cross-Language Information Retrieval; DAVIS, M.W.: On the Effective Use of Large Parallel Corpora in Cross-Language Text Retrieval; BALLESTEROS, L. u. W.B. CROFT: Statistical Methods for Cross-Language Information Retrieval; Distributed Cross-Lingual Information Retrieval; Automatic Cross-Language Information Retrieval Using Latent Semantic Indexing; EVANS, D.A. u.a.: Mapping Vocabularies Using Latent Semantics; PICCHI, E. u. C. PETERS: Cross-Language Information Retrieval: A System for Comparable Corpus Querying; YAMABANA, K. u.a.: A Language Conversion Front-End for Cross-Language Information Retrieval; GACHOT, D.A. u.a.: The Systran NLP Browser: An Application of Machine Translation Technology in Cross-Language Information Retrieval; HULL, D.: A Weighted Boolean Model for Cross-Language Text Retrieval; SHERIDAN, P. u.a. Building a Large Multilingual Test Collection from Comparable News Documents; OARD; D.W. u. B.J. DORR: Evaluating Cross-Language Text Filtering Effectiveness
    Footnote
    Rez. in: Machine translation review: 1999, no.10, S.26-27 (D. Lewis): "Cross Language Information Retrieval (CLIR) addresses the growing need to access large volumes of data across language boundaries. The typical requirement is for the user to input a free form query, usually a brief description of a topic, into a search or retrieval engine which returns a list, in ranked order, of documents or web pages that are relevant to the topic. The search engine matches the terms in the query to indexed terms, usually keywords previously derived from the target documents. Unlike monolingual information retrieval, CLIR requires query terms in one language to be matched to indexed terms in another. Matching can be done by bilingual dictionary lookup, full machine translation, or by applying statistical methods. A query's success is measured in terms of recall (how many potentially relevant target documents are found) and precision (what proportion of documents found are relevant). Issues in CLIR are how to translate query terms into index terms, how to eliminate alternative translations (e.g. to decide that French 'traitement' in a query means 'treatment' and not 'salary'), and how to rank or weight translation alternatives that are retained (e.g. how to order the French terms 'aventure', 'business', 'affaire', and 'liaison' as relevant translations of English 'affair'). Grefenstette provides a lucid and useful overview of the field and the problems. The volume brings together a number of experiments and projects in CLIR. Mark Davies (New Mexico State University) describes Recuerdo, a Spanish retrieval engine which reduces translation ambiguities by scanning indexes for parallel texts; it also uses either a bilingual dictionary or direct equivalents from a parallel corpus in order to compare results for queries on parallel texts. Lisa Ballesteros and Bruce Croft (University of Massachusetts) use a 'local feedback' technique which automatically enhances a query by adding extra terms to it both before and after translation; such terms can be derived from documents known to be relevant to the query.
    Christian Fluhr at al (DIST/SMTI, France) outline the EMIR (European Multilingual Information Retrieval) and ESPRIT projects. They found that using SYSTRAN to machine translate queries and to access material from various multilingual databases produced less relevant results than a method referred to as 'multilingual reformulation' (the mechanics of which are only hinted at). An interesting technique is Latent Semantic Indexing (LSI), described by Michael Littman et al (Brown University) and, most clearly, by David Evans et al (Carnegie Mellon University). LSI involves creating matrices of documents and the terms they contain and 'fitting' related documents into a reduced matrix space. This effectively allows queries to be mapped onto a common semantic representation of the documents. Eugenio Picchi and Carol Peters (Pisa) report on a procedure to create links between translation equivalents in an Italian-English parallel corpus. The links are used to construct parallel linguistic contexts in real-time for any term or combination of terms that is being searched for in either language. Their interest is primarily lexicographic but they plan to apply the same procedure to comparable corpora, i.e. to texts which are not translations of each other but which share the same domain. Kiyoshi Yamabana et al (NEC, Japan) address the issue of how to disambiguate between alternative translations of query terms. Their DMAX (double maximise) method looks at co-occurrence frequencies between both source language words and target language words in order to arrive at the most probable translation. The statistical data for the decision are derived, not from the translation texts but independently from monolingual corpora in each language. An interactive user interface allows the user to influence the selection of terms during the matching process. Denis Gachot et al (SYSTRAN) describe the SYSTRAN NLP browser, a prototype tool which collects parsing information derived from a text or corpus previously translated with SYSTRAN. The user enters queries into the browser in either a structured or free form and receives grammatical and lexical information about the source text and/or its translation.
    Series
    The Kluwer International series on information retrieval
  9. Hofferer, M.: Heuristic search in information retrieval (1994) 0.01
    0.010234192 = product of:
      0.071639344 = sum of:
        0.01804893 = weight(_text_:information in 1070) [ClassicSimilarity], result of:
          0.01804893 = score(doc=1070,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3469568 = fieldWeight in 1070, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1070)
        0.05359041 = weight(_text_:retrieval in 1070) [ClassicSimilarity], result of:
          0.05359041 = score(doc=1070,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.59785134 = fieldWeight in 1070, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1070)
      0.14285715 = coord(2/14)
    
    Abstract
    Describes an adaptive information retrieval system: Information Retrieval Algorithm System (IRAS); that uses heuristic searching to sample a document space and retrieve relevant documents according to users' requests; and also a learning module based on a knowledge representation system and an approximate probabilistic characterization of relevant documents; to reproduce a user classification of relevant documents and to provide a rule controlled ranking
    Source
    Information retrieval: new systems and current research. Proceedings of the 15th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Glasgow 1993. Ed.: Ruben Leon
  10. Carpineto, C.; Romano, G.: Information retrieval through hybrid navigation of lattice representations (1996) 0.01
    0.010220967 = product of:
      0.07154677 = sum of:
        0.012233062 = weight(_text_:information in 7434) [ClassicSimilarity], result of:
          0.012233062 = score(doc=7434,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23515764 = fieldWeight in 7434, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7434)
        0.05931371 = weight(_text_:retrieval in 7434) [ClassicSimilarity], result of:
          0.05931371 = score(doc=7434,freq=16.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.6617001 = fieldWeight in 7434, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7434)
      0.14285715 = coord(2/14)
    
    Abstract
    Presents a comprehensive approach to automatic organization and hybrid navigation of text databases. An organizing stage builds a particular lattice representation of the data, through text indexing followed by lattice clustering of the indexed texts. The lattice representation supports the navigation state of the system, a visual retrieval interface that combines 3 main retrieval strategies: browsing, querying, and bounding. Such a hybrid paradigm permits high flexibility in trading off information exploration and retrieval, and had good retrieval performance. Compares information retrieval using lattice-based hybrid navigation with conventional Boolean querying. Experiments conducted on 2 medium-sized bibliographic databases showed that the performance of lattice retrieval was comparable to or better than Boolean retrieval
  11. Joss, M.W.; Wszola, S.: ¬The engines that can : text search and retrieval software, their strategies, and vendors (1996) 0.01
    0.009689321 = product of:
      0.04521683 = sum of:
        0.0060537956 = weight(_text_:information in 5123) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=5123,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 5123, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5123)
        0.031133216 = weight(_text_:retrieval in 5123) [ClassicSimilarity], result of:
          0.031133216 = score(doc=5123,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 5123, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5123)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 5123) [ClassicSimilarity], result of:
              0.024089456 = score(doc=5123,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 5123, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5123)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Traces the development of text searching and retrieval software designed to cope with the increasing demands made by the storage and handling of large amounts of data, recorded on high data storage media, from CD-ROM to multi gigabyte storage media and online information services, with particular reference to the need to cope with graphics as well as conventional ASCII text. Includes details of: Boolean searching, fuzzy searching and matching; relevance ranking; proximity searching and improved strategies for dealing with text searching in very large databases. Concludes that the best searching tools for CD-ROM publishers are those optimized for searching and retrieval on CD-ROM. CD-ROM drives have relatively lower random seek times than hard discs and so the software most appropriate to the medium is that which can effectively arrange the indexes and text on the CD-ROM to avoid continuous random access searching. Lists and reviews a selection of software packages designed to achieve the sort of results required for rapid CD-ROM searching
    Date
    12. 9.1996 13:56:22
  12. Rajashekar, T.B.; Croft, W.B.: Combining automatic and manual index representations in probabilistic retrieval (1995) 0.01
    0.009594286 = product of:
      0.067159995 = sum of:
        0.015792815 = weight(_text_:information in 2418) [ClassicSimilarity], result of:
          0.015792815 = score(doc=2418,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3035872 = fieldWeight in 2418, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2418)
        0.05136718 = weight(_text_:retrieval in 2418) [ClassicSimilarity], result of:
          0.05136718 = score(doc=2418,freq=12.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.5730491 = fieldWeight in 2418, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2418)
      0.14285715 = coord(2/14)
    
    Abstract
    Results from research in information retrieval have suggested that significant improvements in retrieval effectiveness can be obtained by combining results from multiple index representioms, query formulations, and search strategies. The inference net model of retrieval, which was designed from this point of view, treats information retrieval as an evidental reasoning process where multiple sources of evidence about document and query content are combined to estimate relevance probabilities. Uses a system based on this model to study the retrieval effectiveness benefits of combining these types of document and query information that are found in typical commercial databases and information services. The results indicate that substantial real benefits are possible
    Source
    Journal of the American Society for Information Science. 46(1995) no.4, S.272-283
  13. Sembok, T.M.T.; Rijsbergen, C.J. van: IMAGING: a relevant feedback retrieval with nearest neighbour clusters (1994) 0.01
    0.009286508 = product of:
      0.065005556 = sum of:
        0.011415146 = weight(_text_:information in 1071) [ClassicSimilarity], result of:
          0.011415146 = score(doc=1071,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.21943474 = fieldWeight in 1071, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1071)
        0.05359041 = weight(_text_:retrieval in 1071) [ClassicSimilarity], result of:
          0.05359041 = score(doc=1071,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.59785134 = fieldWeight in 1071, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1071)
      0.14285715 = coord(2/14)
    
    Abstract
    Reports on a study to implement and evaluate imaging retrieval as a relevance feedback retrieval technique with nearest neighbour clusters. Results obtained from experiments show the viability and validity of this strategy and support it as something worth further investigation
    Source
    Information retrieval: new systems and current research. Proceedings of the 15th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Glasgow 1993. Ed.: Ruben Leon
  14. Reddaway, S.: High speed text retrieval from large databases on a massively parallel processor (1991) 0.01
    0.009153739 = product of:
      0.06407617 = sum of:
        0.016143454 = weight(_text_:information in 7745) [ClassicSimilarity], result of:
          0.016143454 = score(doc=7745,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3103276 = fieldWeight in 7745, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=7745)
        0.047932718 = weight(_text_:retrieval in 7745) [ClassicSimilarity], result of:
          0.047932718 = score(doc=7745,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.5347345 = fieldWeight in 7745, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=7745)
      0.14285715 = coord(2/14)
    
    Source
    Information processing and management. 27(1991), S.311-316
  15. Kelledy, F.; Smeaton, A.F.: Signature files and beyond (1996) 0.01
    0.00900243 = product of:
      0.042011343 = sum of:
        0.00856136 = weight(_text_:information in 6973) [ClassicSimilarity], result of:
          0.00856136 = score(doc=6973,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 6973, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=6973)
        0.025420163 = weight(_text_:retrieval in 6973) [ClassicSimilarity], result of:
          0.025420163 = score(doc=6973,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.2835858 = fieldWeight in 6973, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=6973)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 6973) [ClassicSimilarity], result of:
              0.024089456 = score(doc=6973,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 6973, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6973)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  16. Lee, J.H.: Combining the evidence of different relevance feedback methods for information retrieval (1998) 0.01
    0.008845377 = product of:
      0.061917633 = sum of:
        0.019976506 = weight(_text_:information in 6469) [ClassicSimilarity], result of:
          0.019976506 = score(doc=6469,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3840108 = fieldWeight in 6469, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=6469)
        0.04194113 = weight(_text_:retrieval in 6469) [ClassicSimilarity], result of:
          0.04194113 = score(doc=6469,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46789268 = fieldWeight in 6469, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=6469)
      0.14285715 = coord(2/14)
    
    Source
    Information processing and management. 34(1998) no.6, S.681-691
  17. Wong, S.K.M.: On modelling information retrieval with probabilistic inference (1995) 0.01
    0.008844766 = product of:
      0.06191336 = sum of:
        0.013980643 = weight(_text_:information in 1938) [ClassicSimilarity], result of:
          0.013980643 = score(doc=1938,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2687516 = fieldWeight in 1938, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1938)
        0.047932718 = weight(_text_:retrieval in 1938) [ClassicSimilarity], result of:
          0.047932718 = score(doc=1938,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.5347345 = fieldWeight in 1938, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1938)
      0.14285715 = coord(2/14)
    
    Abstract
    Examines and extends the logical models of information retrieval in the context of probability theory and extends the applications of these fundamental ideas to term weighting and relevance. Develops a unified framework for modelling the retrieval process with probabilistic inference to provide a common conceptual and mathematical basis for many retrieval models, such as Boolean, fuzzy sets, vector space, and conventional probabilistic models. Employs this framework to identify the underlying assumptions by each model and analyzes the inherent relationships between them. Although the treatment is primarily theoretical, practical methods for rstimating the required probabilities are provided by simple examples
    Source
    ACM transactions on information systems. 13(1995) no.1, S.38-68
  18. Srinivasan, P.: Query expansion and MEDLINE (1996) 0.01
    0.008808877 = product of:
      0.061662138 = sum of:
        0.008071727 = weight(_text_:information in 8453) [ClassicSimilarity], result of:
          0.008071727 = score(doc=8453,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 8453, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=8453)
        0.05359041 = weight(_text_:retrieval in 8453) [ClassicSimilarity], result of:
          0.05359041 = score(doc=8453,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.59785134 = fieldWeight in 8453, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=8453)
      0.14285715 = coord(2/14)
    
    Abstract
    Evaluates the retrieval effectiveness of query expansion strategies on a test collection of the medical database MEDLINE using Cornell University's SMART retrieval system. Tests 3 expansion strategies for their ability to identify appropriate MeSH terms for user queries. Compares retrieval effectiveness using the original unexpanded and the alternative expanded user queries on a collection of 75 queries and 2.334 Medline citations. Recommends query expansions using retrieval feedback for adding MeSH search terms to a user's initial query
    Source
    Information processing and management. 32(1996) no.4, S.431-443
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  19. Loughran, H.: ¬A review of nearest neighbour information retrieval (1994) 0.01
    0.008548964 = product of:
      0.059842743 = sum of:
        0.017475804 = weight(_text_:information in 616) [ClassicSimilarity], result of:
          0.017475804 = score(doc=616,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3359395 = fieldWeight in 616, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=616)
        0.042366937 = weight(_text_:retrieval in 616) [ClassicSimilarity], result of:
          0.042366937 = score(doc=616,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.47264296 = fieldWeight in 616, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=616)
      0.14285715 = coord(2/14)
    
    Abstract
    Explains the concept of 'nearest neighbour' searching, also known as best match or ranked output, which it is claimed can overcome many of the inadequacies of traditional Boolean methods. Also points to some of the limitations. Identifies a number of commercial information retrieval systems which feature this search technique
    Source
    Information management report. 1994, August, S.11-14
  20. Frants, V.I.; Shapiro, J.: Control and feedback in a documentary information retrieval system (1991) 0.01
    0.008236345 = product of:
      0.05765441 = sum of:
        0.016143454 = weight(_text_:information in 416) [ClassicSimilarity], result of:
          0.016143454 = score(doc=416,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3103276 = fieldWeight in 416, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=416)
        0.041510954 = weight(_text_:retrieval in 416) [ClassicSimilarity], result of:
          0.041510954 = score(doc=416,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46309367 = fieldWeight in 416, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=416)
      0.14285715 = coord(2/14)
    
    Abstract
    Addresses the problem of control in documentary information retrieval systems is analysed and it is shown why an IR system has to be looked at as an adaptive system. The algorithms of feedback are proposed and it is shown how they depend on the type of the collection of documents: static (no change in the collection between searches) and dynamic (when the change occurs between searches). The proposed algorithms are the basis for the development of the fully automated information retrieval systems
    Source
    Journal of the American Society for Information Science. 42(1991) no.9, S.623-634

Types

  • a 84
  • m 4
  • s 3
  • p 2
  • r 2
  • el 1
  • More… Less…