Search (318 results, page 16 of 16)

  • × language_ss:"e"
  • × theme_ss:"Retrievalalgorithmen"
  1. Stock, W.G.: On relevance distributions (2006) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 5116) [ClassicSimilarity], result of:
              0.0054123 = score(doc=5116,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 5116, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5116)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  2. Vechtomova, O.; Karamuftuoglu, M.: Lexical cohesion and term proximity in document ranking (2008) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 2101) [ClassicSimilarity], result of:
              0.0054123 = score(doc=2101,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 2101, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2101)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Crouch, C.J.; Crouch, D.B.; Chen, Q.; Holtz, S.J.: Improving the retrieval effectiveness of very short queries (2002) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2572) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2572,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2572, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2572)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes an automatic approach designed to improve the retrieval effectiveness of very short queries such as those used in web searching. The method is based on the observation that stemming, which is designed to maximize recall, often results in depressed precision. Our approach is based on pseudo-feedback and attempts to increase the number of relevant documents in the pseudo-relevant set by reranking those documents based on the presence of unstemmed query terms in the document text. The original experiments underlying this work were carried out using Smart 11.0 and the lnc.ltc weighting scheme on three sets of documents from the TREC collection with corresponding TREC (title only) topics as queries. (The average length of these queries after stoplisting ranges from 2.4 to 4.5 terms.) Results, evaluated in terms of P@20 and non-interpolated average precision, showed clearly that pseudo-feedback (PF) based on this approach was effective in increasing the number of relevant documents in the top ranks. Subsequent experiments, performed on the same data sets using Smart 13.0 and the improved Lnu.ltu weighting scheme, indicate that these results hold up even over the much higher baseline provided by the new weights. Query drift analysis presents a more detailed picture of the improvements produced by this process.
    Type
    a
  4. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1607) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1607,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
    Type
    a
  5. Xu, B.; Lin, H.; Lin, Y.: Assessment of learning to rank methods for query expansion (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2929,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2929, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudo relevance feedback, as an effective query expansion method, can significantly improve information retrieval performance. However, the method may negatively impact the retrieval performance when some irrelevant terms are used in the expanded query. Therefore, it is necessary to refine the expansion terms. Learning to rank methods have proven effective in information retrieval to solve ranking problems by ranking the most relevant documents at the top of the returned list, but few attempts have been made to employ learning to rank methods for term refinement in pseudo relevance feedback. This article proposes a novel framework to explore the feasibility of using learning to rank to optimize pseudo relevance feedback by means of reranking the candidate expansion terms. We investigate some learning approaches to choose the candidate terms and introduce some state-of-the-art learning to rank methods to refine the expansion terms. In addition, we propose two term labeling strategies and examine the usefulness of various term features to optimize the framework. Experimental results with three TREC collections show that our framework can effectively improve retrieval performance.
    Type
    a
  6. Jacucci, G.; Barral, O.; Daee, P.; Wenzel, M.; Serim, B.; Ruotsalo, T.; Pluchino, P.; Freeman, J.; Gamberini, L.; Kaski, S.; Blankertz, B.: Integrating neurophysiologic relevance feedback in intent modeling for information retrieval (2019) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 5356) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=5356,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 5356, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5356)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
    Type
    a
  7. Srinivasan, P.: Intelligent information retrieval using rough set approximations (1989) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2526) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2526,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Brenner, E.H.: Beyond Boolean : new approaches in information retrieval; the quest for intuitive online search systems past, present & future (1995) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2547) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2547,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2547)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Issue
    A collection of writings.
  9. Losee, R.M.; Church Jr., L.: Are two document clusters better than one? : the cluster performance question for information retrieval (2005) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 3270) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=3270,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 3270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Weller, K.; Stock, W.G.: Transitive meronymy : automatic concept-based query expansion using weighted transitive part-whole relations (2008) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 1835) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=1835,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 1835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Abdelkareem, M.A.A.: In terms of publication index, what indicator is the best for researchers indexing, Google Scholar, Scopus, Clarivate or others? (2018) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 4548) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=4548,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 4548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4548)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    I believe that Google Scholar is the most popular academic indexing way for researchers and citations. However, some other indexing institutions may be more professional than Google Scholar but not as popular as Google Scholar. Other indexing websites like Scopus and Clarivate are providing more statistical figures for scholars, institutions or even journals. On account of publication citations, always Google Scholar shows higher citations for a paper than other indexing websites since Google Scholar consider most of the publication platforms so he can easily count the citations. While other databases just consider the citations come from those journals that are already indexed in their database
  12. Bilal, D.: Ranking, relevance judgment, and precision of information retrieval on children's queries : evaluation of Google, Yahoo!, Bing, Yahoo! Kids, and ask Kids (2012) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 393) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=393,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 393, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=393)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study employed benchmarking and intellectual relevance judgment in evaluating Google, Yahoo!, Bing, Yahoo! Kids, and Ask Kids on 30 queries that children formulated to find information for specific tasks. Retrieved hits on given queries were benchmarked to Google's and Yahoo! Kids' top-five ranked hits retrieved. Relevancy of hits was judged on a graded scale; precision was calculated using the precision-at-ten metric (P@10). Yahoo! and Bing produced a similar percentage in hit overlap with Google (nearly 30%), but differed in the ranking of hits. Ask Kids retrieved 11% in hit overlap with Google versus 3% by Yahoo! Kids. The engines retrieved 26 hits across query clusters that overlapped with Yahoo! Kids' top-five ranked hits. Precision (P) that the engines produced across the queries was P = 0.48 for relevant hits, and P = 0.28 for partially relevant hits. Precision by Ask Kids was P = 0.44 for relevant hits versus P = 0.21 by Yahoo! Kids. Bing produced the highest total precision (TP) of relevant hits (TP = 0.86) across the queries, and Yahoo! Kids yielded the lowest (TP = 0.47). Average precision (AP) of relevant hits was AP = 0.56 by leading engines versus AP = 0.29 by small engines. In contrast, average precision of partially relevant hits was AP = 0.83 by small engines versus AP = 0.33 by leading engines. Average precision of relevant hits across the engines was highest on two-word queries and lowest on one-word queries. Google performed best on natural language queries; Bing did the same (P = 0.69) on two-word queries. The findings have implications for search engine ranking algorithms, relevance theory, search engine design, research design, and information literacy.
    Type
    a
  13. Gauch, S.; Smith, J.B.: ¬An expert system for automatic query reformation (1993) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 3693) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=3693,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Bodoff, D.; Wong, S.P.-S.: Documents and queries as random variables : history and implications (2006) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 193) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=193,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 674) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=674,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 674, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=674)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 6) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=6,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 6, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=6)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Chapter 1. Introduction to Web Search Engines: 1.1 A Short History of Information Retrieval - 1.2 An Overview of Traditional Information Retrieval - 1.3 Web Information Retrieval Chapter 2. Crawling, Indexing, and Query Processing: 2.1 Crawling - 2.2 The Content Index - 2.3 Query Processing Chapter 3. Ranking Webpages by Popularity: 3.1 The Scene in 1998 - 3.2 Two Theses - 3.3 Query-Independence Chapter 4. The Mathematics of Google's PageRank: 4.1 The Original Summation Formula for PageRank - 4.2 Matrix Representation of the Summation Equations - 4.3 Problems with the Iterative Process - 4.4 A Little Markov Chain Theory - 4.5 Early Adjustments to the Basic Model - 4.6 Computation of the PageRank Vector - 4.7 Theorem and Proof for Spectrum of the Google Matrix Chapter 5. Parameters in the PageRank Model: 5.1 The a Factor - 5.2 The Hyperlink Matrix H - 5.3 The Teleportation Matrix E Chapter 6. The Sensitivity of PageRank; 6.1 Sensitivity with respect to alpha - 6.2 Sensitivity with respect to H - 6.3 Sensitivity with respect to vT - 6.4 Other Analyses of Sensitivity - 6.5 Sensitivity Theorems and Proofs Chapter 7. The PageRank Problem as a Linear System: 7.1 Properties of (I - alphaS) - 7.2 Properties of (I - alphaH) - 7.3 Proof of the PageRank Sparse Linear System Chapter 8. Issues in Large-Scale Implementation of PageRank: 8.1 Storage Issues - 8.2 Convergence Criterion - 8.3 Accuracy - 8.4 Dangling Nodes - 8.5 Back Button Modeling
  17. Information retrieval : data structures and algorithms (1992) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3495) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3495,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3495, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3495)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    An edited volume containing data structures and algorithms for information retrieval including a disk with examples written in C. for prgrammers and students interested in parsing text, automated indexing, its the first collection in book form of the basic data structures and algorithms that are critical to the storage and retrieval of documents. ------------------Enthält die Kapitel: FRAKES, W.B.: Introduction to information storage and retrieval systems; BAEZA-YATES, R.S.: Introduction to data structures and algorithms related to information retrieval; HARMAN, D. u.a.: Inverted files; FALOUTSOS, C.: Signature files; GONNET, G.H. u.a.: New indices for text: PAT trees and PAT arrays; FORD, D.A. u. S. CHRISTODOULAKIS: File organizations for optical disks; FOX, C.: Lexical analysis and stoplists; FRAKES, W.B.: Stemming algorithms; SRINIVASAN, P.: Thesaurus construction; BAEZA-YATES, R.A.: String searching algorithms; HARMAN, D.: Relevance feedback and other query modification techniques; WARTIK, S.: Boolean operators; WARTIK, S. u.a.: Hashing algorithms; HARMAN, D.: Ranking algorithms; FOX, E.: u.a.: Extended Boolean models; RASMUSSEN, E.: Clustering algorithms; HOLLAAR, L.: Special-purpose hardware for information retrieval; STANFILL, C.: Parallel information retrieval algorithms
  18. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.00
    6.765375E-4 = product of:
      0.001353075 = sum of:
        0.001353075 = product of:
          0.00270615 = sum of:
            0.00270615 = weight(_text_:a in 7) [ClassicSimilarity], result of:
              0.00270615 = score(doc=7,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.050957955 = fieldWeight in 7, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=7)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.

Types

  • a 303
  • m 7
  • el 6
  • s 3
  • p 2
  • r 1
  • More… Less…