Search (32 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  1. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.05
    0.05331619 = product of:
      0.15994857 = sum of:
        0.08667288 = weight(_text_:web in 3934) [ClassicSimilarity], result of:
          0.08667288 = score(doc=3934,freq=22.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.59793836 = fieldWeight in 3934, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.07327569 = weight(_text_:computer in 3934) [ClassicSimilarity], result of:
          0.07327569 = score(doc=3934,freq=10.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.45142862 = fieldWeight in 3934, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.33333334 = coord(2/6)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
    LCSH
    Computer science
    Computer Science
    RSWK
    Ontologie <Wissensverarbeitung> / Semantic Web
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
    Subject
    Ontologie <Wissensverarbeitung> / Semantic Web
    Computer science
    Computer Science
    Theme
    Semantic Web
  2. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.05
    0.051763047 = product of:
      0.10352609 = sum of:
        0.036585998 = weight(_text_:web in 3283) [ClassicSimilarity], result of:
          0.036585998 = score(doc=3283,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.04587784 = weight(_text_:computer in 3283) [ClassicSimilarity], result of:
          0.04587784 = score(doc=3283,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.04212451 = score(doc=3283,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Series
    Communications in computer and information science; 672
    Theme
    Semantic Web
  3. Neubauer, G.: Visualization of typed links in linked data (2017) 0.05
    0.047345653 = product of:
      0.14203696 = sum of:
        0.06812209 = weight(_text_:wide in 3912) [ClassicSimilarity], result of:
          0.06812209 = score(doc=3912,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.34615302 = fieldWeight in 3912, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
        0.07391487 = weight(_text_:web in 3912) [ClassicSimilarity], result of:
          0.07391487 = score(doc=3912,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5099235 = fieldWeight in 3912, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
      0.33333334 = coord(2/6)
    
    Abstract
    Das Themengebiet der Arbeit behandelt Visualisierungen von typisierten Links in Linked Data. Die wissenschaftlichen Gebiete, die im Allgemeinen den Inhalt des Beitrags abgrenzen, sind das Semantic Web, das Web of Data und Informationsvisualisierung. Das Semantic Web, das von Tim Berners Lee 2001 erfunden wurde, stellt eine Erweiterung zum World Wide Web (Web 2.0) dar. Aktuelle Forschungen beziehen sich auf die Verknüpfbarkeit von Informationen im World Wide Web. Um es zu ermöglichen, solche Verbindungen wahrnehmen und verarbeiten zu können sind Visualisierungen die wichtigsten Anforderungen als Hauptteil der Datenverarbeitung. Im Zusammenhang mit dem Sematic Web werden Repräsentationen von zusammenhängenden Informationen anhand von Graphen gehandhabt. Der Grund des Entstehens dieser Arbeit ist in erster Linie die Beschreibung der Gestaltung von Linked Data-Visualisierungskonzepten, deren Prinzipien im Rahmen einer theoretischen Annäherung eingeführt werden. Anhand des Kontexts führt eine schrittweise Erweiterung der Informationen mit dem Ziel, praktische Richtlinien anzubieten, zur Vernetzung dieser ausgearbeiteten Gestaltungsrichtlinien. Indem die Entwürfe zweier alternativer Visualisierungen einer standardisierten Webapplikation beschrieben werden, die Linked Data als Netzwerk visualisiert, konnte ein Test durchgeführt werden, der deren Kompatibilität zum Inhalt hatte. Der praktische Teil behandelt daher die Designphase, die Resultate, und zukünftige Anforderungen des Projektes, die durch die Testung ausgearbeitet wurden.
    Theme
    Semantic Web
  4. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.05
    0.04535232 = product of:
      0.13605696 = sum of:
        0.08362513 = weight(_text_:web in 3926) [ClassicSimilarity], result of:
          0.08362513 = score(doc=3926,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5769126 = fieldWeight in 3926, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3926)
        0.05243182 = weight(_text_:computer in 3926) [ClassicSimilarity], result of:
          0.05243182 = score(doc=3926,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 3926, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=3926)
      0.33333334 = coord(2/6)
    
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  5. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.04
    0.04409325 = product of:
      0.13227975 = sum of:
        0.04434892 = weight(_text_:web in 3274) [ClassicSimilarity], result of:
          0.04434892 = score(doc=3274,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 3274, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.087930836 = weight(_text_:computer in 3274) [ClassicSimilarity], result of:
          0.087930836 = score(doc=3274,freq=10.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.5417144 = fieldWeight in 3274, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
      0.33333334 = coord(2/6)
    
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.
    LCSH
    Computer science
    Text processing (Computer science)
    Series
    Communications in computer and information science; 544
    Subject
    Computer science
    Text processing (Computer science)
    Theme
    Semantic Web
  6. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.04
    0.042189382 = product of:
      0.12656814 = sum of:
        0.04816959 = weight(_text_:wide in 6061) [ClassicSimilarity], result of:
          0.04816959 = score(doc=6061,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 6061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.078398556 = weight(_text_:web in 6061) [ClassicSimilarity], result of:
          0.078398556 = score(doc=6061,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5408555 = fieldWeight in 6061, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
      0.33333334 = coord(2/6)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
    Theme
    Semantic Web
  7. Linked data and user interaction : the road ahead (2015) 0.04
    0.038494885 = product of:
      0.115484655 = sum of:
        0.06914103 = weight(_text_:web in 2552) [ClassicSimilarity], result of:
          0.06914103 = score(doc=2552,freq=14.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.47698978 = fieldWeight in 2552, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2552)
        0.04634362 = weight(_text_:computer in 2552) [ClassicSimilarity], result of:
          0.04634362 = score(doc=2552,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28550854 = fieldWeight in 2552, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2552)
      0.33333334 = coord(2/6)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
    LCSH
    Semantic Web
    User interfaces (Computer systems)
    RSWK
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
    Subject
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
    Semantic Web
    User interfaces (Computer systems)
    Theme
    Semantic Web
  8. Neumaier, S.: Data integration for open data on the Web (2017) 0.04
    0.038469743 = product of:
      0.115409225 = sum of:
        0.08263934 = weight(_text_:web in 3923) [ClassicSimilarity], result of:
          0.08263934 = score(doc=3923,freq=20.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5701118 = fieldWeight in 3923, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3923)
        0.03276989 = weight(_text_:computer in 3923) [ClassicSimilarity], result of:
          0.03276989 = score(doc=3923,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 3923, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3923)
      0.33333334 = coord(2/6)
    
    Abstract
    In this lecture we will discuss and introduce challenges of integrating openly available Web data and how to solve them. Firstly, while we will address this topic from the viewpoint of Semantic Web research, not all data is readily available as RDF or Linked Data, so we will give an introduction to different data formats prevalent on the Web, namely, standard formats for publishing and exchanging tabular, tree-shaped, and graph data. Secondly, not all Open Data is really completely open, so we will discuss and address issues around licences, terms of usage associated with Open Data, as well as documentation of data provenance. Thirdly, we will discuss issues connected with (meta-)data quality issues associated with Open Data on the Web and how Semantic Web techniques and vocabularies can be used to describe and remedy them. Fourth, we will address issues about searchability and integration of Open Data and discuss in how far semantic search can help to overcome these. We close with briefly summarizing further issues not covered explicitly herein, such as multi-linguality, temporal aspects (archiving, evolution, temporal querying), as well as how/whether OWL and RDFS reasoning on top of integrated open data could be help.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  9. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.03
    0.03313618 = product of:
      0.099408545 = sum of:
        0.026132854 = weight(_text_:web in 2192) [ClassicSimilarity], result of:
          0.026132854 = score(doc=2192,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 2192, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.07327569 = weight(_text_:computer in 2192) [ClassicSimilarity], result of:
          0.07327569 = score(doc=2192,freq=10.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.45142862 = fieldWeight in 2192, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
      0.33333334 = coord(2/6)
    
    LCSH
    Computer science
    Text processing (Computer science)
    Series
    Communications in computer and information science; 478
    Subject
    Computer science
    Text processing (Computer science)
    Theme
    Semantic Web
  10. Piscitelli, F.A.: Library linked data models : library data in the Semantic Web (2019) 0.03
    0.031144341 = product of:
      0.09343302 = sum of:
        0.04816959 = weight(_text_:wide in 5478) [ClassicSimilarity], result of:
          0.04816959 = score(doc=5478,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 5478, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5478)
        0.045263432 = weight(_text_:web in 5478) [ClassicSimilarity], result of:
          0.045263432 = score(doc=5478,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 5478, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5478)
      0.33333334 = coord(2/6)
    
    Abstract
    This exploratory study examined Linked Data (LD) schemas/ontologies and data models proposed or in use by libraries around the world using MAchine Readable Cataloging (MARC) as a basis for comparison of the scope and extensibility of these potential new standards. The researchers selected 14 libraries from national libraries, academic libraries, government libraries, public libraries, multi-national libraries, and cultural heritage centers currently developing Library Linked Data (LLD) schemas. The choices of models, schemas, and elements used in each library's LD can create interoperability issues for LD services because of substantial differences between schemas and data models evolving via local decisions. The researchers observed that a wide variety of vocabularies and ontologies were used for LLD including common web schemas such as Dublin Core (DC)/DCTerms, Schema.org and Resource Description Framework (RDF), as well as deprecated schemas such as MarcOnt and rdagroup1elements. A sharp divide existed as well between LLD schemas using variations of the Functional Requirements for Bibliographic Records (FRBR) data model and those with different data models or even with no listed data model. Libraries worldwide are not using the same elements or even the same ontologies, schemas and data models to describe the same materials using the same general concepts.
    Theme
    Semantic Web
  11. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.03
    0.028143687 = product of:
      0.08443106 = sum of:
        0.063368805 = weight(_text_:web in 759) [ClassicSimilarity], result of:
          0.063368805 = score(doc=759,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43716836 = fieldWeight in 759, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04212451 = score(doc=759,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Theme
    Semantic Web
  12. Smith, D.A.: Exploratory and faceted browsing over heterogeneous and cross-domain data sources. (2011) 0.03
    0.027890932 = product of:
      0.08367279 = sum of:
        0.04434892 = weight(_text_:web in 4839) [ClassicSimilarity], result of:
          0.04434892 = score(doc=4839,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 4839, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4839)
        0.039323866 = weight(_text_:computer in 4839) [ClassicSimilarity], result of:
          0.039323866 = score(doc=4839,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 4839, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4839)
      0.33333334 = coord(2/6)
    
    Abstract
    Exploration of heterogeneous data sources increases the value of information by allowing users to answer questions through exploration across multiple sources; Users can use information that has been posted across the Web to answer questions and learn about new domains. We have conducted research that lowers the interrogation time of faceted data, by combining related information from different sources. The work contributes methodologies in combining heterogenous sources, and how to deliver that data to a user interface scalably, with enough performance to support rapid interrogation of the knowledge by the user. The work also contributes how to combine linked data sources so that users can create faceted browsers that target the information facets of their needs. The work is grounded and proven in a number of experiments and test cases that study the contributions in domain research work.
    Imprint
    Southampton : University, Faculty of Physical and Applied Sciences, Electronics and Computer Science
    Theme
    Semantic Web
  13. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.03
    0.026295822 = product of:
      0.07888746 = sum of:
        0.041812565 = weight(_text_:web in 5329) [ClassicSimilarity], result of:
          0.041812565 = score(doc=5329,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2884563 = fieldWeight in 5329, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
        0.037074894 = weight(_text_:computer in 5329) [ClassicSimilarity], result of:
          0.037074894 = score(doc=5329,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.22840683 = fieldWeight in 5329, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
      0.33333334 = coord(2/6)
    
    Abstract
    This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.
    LCSH
    Semantic Web
    Computer science
    Subject
    Semantic Web
    Computer science
    Theme
    Semantic Web
  14. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.03
    0.025450168 = product of:
      0.0763505 = sum of:
        0.024084795 = weight(_text_:wide in 4232) [ClassicSimilarity], result of:
          0.024084795 = score(doc=4232,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.122383565 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.052265707 = weight(_text_:web in 4232) [ClassicSimilarity], result of:
          0.052265707 = score(doc=4232,freq=32.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 4232, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.33333334 = coord(2/6)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Theme
    Semantic Web
  15. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.02
    0.018240947 = product of:
      0.054722838 = sum of:
        0.035060905 = weight(_text_:web in 2127) [ClassicSimilarity], result of:
          0.035060905 = score(doc=2127,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.24187797 = fieldWeight in 2127, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
        0.019661933 = weight(_text_:computer in 2127) [ClassicSimilarity], result of:
          0.019661933 = score(doc=2127,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.12113102 = fieldWeight in 2127, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
      0.33333334 = coord(2/6)
    
    Content
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
    Theme
    Semantic Web
  16. Krause, J.: Semantic heterogeneity : comparing new semantic web approaches with those of digital libraries (2008) 0.02
    0.01570389 = product of:
      0.09422334 = sum of:
        0.09422334 = weight(_text_:web in 1908) [ClassicSimilarity], result of:
          0.09422334 = score(doc=1908,freq=26.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.65002745 = fieldWeight in 1908, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. Design/methodology/approach - The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. Findings - The points criticised by the semantic web and ontology approaches are the same as those of the DL "Shell model approach" from the mid-1990s, with emphasis on the centrality of its heterogeneity components (used, for example, in vascoda). The Shell model argument began with the "invisible web", necessitating the restructuring of DL approaches. The conclusion is that both approaches fit well together and that the Shell model, with its semantic heterogeneity components, can be reformulated on the semantic web basis. Practical implications - A reinterpretation of the DL approaches of semantic heterogeneity and adapting to standards and tools supported by the W3C should be the best solution. It is therefore recommended that - although most of the semantic web standards are not technologically refined for commercial applications at present - all individual DL developments should be checked for their adaptability to the W3C standards of the semantic web. Originality/value - A unique conceptual analysis of the parallel developments emanating from the digital library and semantic web communities.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
    Theme
    Semantic Web
  17. Semantic search over the Web (2012) 0.01
    0.011556383 = product of:
      0.0693383 = sum of:
        0.0693383 = weight(_text_:web in 411) [ClassicSimilarity], result of:
          0.0693383 = score(doc=411,freq=22.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.47835067 = fieldWeight in 411, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
      0.16666667 = coord(1/6)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
    Theme
    Semantic Web
  18. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.01
    0.009855317 = product of:
      0.059131898 = sum of:
        0.059131898 = weight(_text_:web in 3883) [ClassicSimilarity], result of:
          0.059131898 = score(doc=3883,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 3883, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
      0.16666667 = coord(1/6)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Theme
    Semantic Web
  19. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.01
    0.009855317 = product of:
      0.059131898 = sum of:
        0.059131898 = weight(_text_:web in 4815) [ClassicSimilarity], result of:
          0.059131898 = score(doc=4815,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 4815, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4815)
      0.16666667 = coord(1/6)
    
    Theme
    Semantic Web
  20. Isaac, A.; Schlobach, S.; Matthezing, H.; Zinn, C.: Integrated access to cultural heritage resources through representation and alignment of controlled vocabularies (2008) 0.01
    0.009218805 = product of:
      0.055312827 = sum of:
        0.055312827 = weight(_text_:web in 3398) [ClassicSimilarity], result of:
          0.055312827 = score(doc=3398,freq=14.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.38159183 = fieldWeight in 3398, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3398)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - To show how semantic web techniques can help address semantic interoperability issues in the broad cultural heritage domain, allowing users an integrated and seamless access to heterogeneous collections. Design/methodology/approach - This paper presents the heterogeneity problems to be solved. It introduces semantic web techniques that can help in solving them, focusing on the representation of controlled vocabularies and their semantic alignment. It gives pointers to some previous projects and experiments that have tried to address the problems discussed. Findings - Semantic web research provides practical technical and methodological approaches to tackle the different issues. Two contributions of interest are the simple knowledge organisation system model and automatic vocabulary alignment methods and tools. These contributions were demonstrated to be usable for enabling semantic search and navigation across collections. Research limitations/implications - The research aims at designing different representation and alignment methods for solving interoperability problems in the context of controlled subject vocabularies. Given the variety and technical richness of current research in the semantic web field, it is impossible to provide an in-depth account or an exhaustive list of references. Every aspect of the paper is, however, given one or several pointers for further reading. Originality/value - This article provides a general and practical introduction to relevant semantic web techniques. It is of specific value for the practitioners in the cultural heritage and digital library domains who are interested in applying these methods in practice.
    Content
    This paper is based on a talk given at "Information Access for the Global Community, An International Seminar on the Universal Decimal Classification" held on 4-5 June 2007 in The Hague, The Netherlands. An abstract of this talk will be published in Extensions and Corrections to the UDC, an annual publication of the UDC consortium. Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
    Theme
    Semantic Web

Years

Types