Search (27 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  1. Scheir, P.; Pammer, V.; Lindstaedt, S.N.: Information retrieval on the Semantic Web : does it exist? (2007) 0.00
    0.0024974653 = product of:
      0.018730989 = sum of:
        0.011009198 = weight(_text_:und in 4329) [ClassicSimilarity], result of:
          0.011009198 = score(doc=4329,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.17141339 = fieldWeight in 4329, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
        0.0077217915 = product of:
          0.015443583 = sum of:
            0.015443583 = weight(_text_:information in 4329) [ClassicSimilarity], result of:
              0.015443583 = score(doc=4329,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3035872 = fieldWeight in 4329, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4329)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Plenty of contemporary attempts to search exist that are associated with the area of Semantic Web. But which of them qualify as information retrieval for the Semantic Web? Do such approaches exist? To answer these questions we take a look at the nature of the Semantic Web and Semantic Desktop and at definitions for information and data retrieval. We survey current approaches referred to by their authors as information retrieval for the Semantic Web or that use Semantic Web technology for search.
    Content
    Enthält einen Überblick über Modelle, Systeme und Projekte
    Source
    Lernen - Wissen - Adaption : workshop proceedings / LWA 2007, Halle, September 2007. Martin Luther University Halle-Wittenberg, Institute for Informatics, Databases and Information Systems. Hrsg.: Alexander Hinneburg
  2. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.00
    0.0024833512 = product of:
      0.037250265 = sum of:
        0.037250265 = sum of:
          0.009767379 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
            0.009767379 = score(doc=4330,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.1920054 = fieldWeight in 4330, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4330)
          0.027482886 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
            0.027482886 = score(doc=4330,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.2708308 = fieldWeight in 4330, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4330)
      0.06666667 = coord(1/15)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  3. OWL Web Ontology Language Test Cases (2004) 0.00
    0.0010469672 = product of:
      0.015704507 = sum of:
        0.015704507 = product of:
          0.031409014 = sum of:
            0.031409014 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.031409014 = score(doc=4685,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    14. 8.2011 13:33:22
  4. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    7.852253E-4 = product of:
      0.011778379 = sum of:
        0.011778379 = product of:
          0.023556758 = sum of:
            0.023556758 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.023556758 = score(doc=4649,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    26.12.2011 13:40:22
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    6.5435446E-4 = product of:
      0.009815317 = sum of:
        0.009815317 = product of:
          0.019630633 = sum of:
            0.019630633 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.019630633 = score(doc=4553,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    16.11.2018 14:22:01
  6. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.00
    4.3507366E-4 = product of:
      0.0065261046 = sum of:
        0.0065261046 = product of:
          0.013052209 = sum of:
            0.013052209 = weight(_text_:information in 231) [ClassicSimilarity], result of:
              0.013052209 = score(doc=231,freq=14.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.256578 = fieldWeight in 231, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=231)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
  7. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 3829) [ClassicSimilarity], result of:
              0.011839852 = score(doc=3829,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 3829, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Source
    Information Systems. 37(2012) no. 4, S.294-305
  8. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    3.4178712E-4 = product of:
      0.0051268064 = sum of:
        0.0051268064 = product of:
          0.010253613 = sum of:
            0.010253613 = weight(_text_:information in 4316) [ClassicSimilarity], result of:
              0.010253613 = score(doc=4316,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.20156369 = fieldWeight in 4316, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4316)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RDF annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  9. Sánchez, M.F.: Semantically enhanced Information Retrieval : an ontology-based approach (2006) 0.00
    3.2888478E-4 = product of:
      0.0049332716 = sum of:
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 4327) [ClassicSimilarity], result of:
              0.009866543 = score(doc=4327,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 4327, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4327)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
  10. RDF/XML Syntax Specification (Revised) : W3C Recommendation 10 February 2004 (2004) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 3066) [ClassicSimilarity], result of:
              0.009767379 = score(doc=3066,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 3066, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3066)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The Resource Description Framework (RDF) is a general-purpose language for representing information in the Web. This document defines an XML syntax for RDF called RDF/XML in terms of Namespaces in XML, the XML Information Set and XML Base. The formal grammar for the syntax is annotated with actions generating triples of the RDF graph as defined in RDF Concepts and Abstract Syntax. The triples are written using the N-Triples RDF graph serializing format which enables more precise recording of the mapping in a machine processable form. The mappings are recorded as tests cases, gathered and published in RDF Test Cases.
  11. Davies, J.; Weeks, R.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 4320) [ClassicSimilarity], result of:
              0.008544678 = score(doc=4320,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 4320, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4320)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RD annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  12. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 3297) [ClassicSimilarity], result of:
              0.008544678 = score(doc=3297,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 3297, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
  13. OWL Web Ontology Language Overview (2004) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 4682) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=4682,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 4682, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4682)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax.
  14. RDF Vocabulary Description Language 1.0 : RDF Schema (2004) 0.00
    2.6310782E-4 = product of:
      0.0039466172 = sum of:
        0.0039466172 = product of:
          0.0078932345 = sum of:
            0.0078932345 = weight(_text_:information in 3057) [ClassicSimilarity], result of:
              0.0078932345 = score(doc=3057,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1551638 = fieldWeight in 3057, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3057)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The Resource Description Framework (RDF) is a general-purpose language for representing information in the Web. This specification describes how to use RDF to describe RDF vocabularies. This specification defines a vocabulary for this purpose and defines other built-in RDF vocabulary initially specified in the RDF Model and Syntax Specification.
  15. RDF Primer : W3C Recommendation 10 February 2004 (2004) 0.00
    2.6310782E-4 = product of:
      0.0039466172 = sum of:
        0.0039466172 = product of:
          0.0078932345 = sum of:
            0.0078932345 = weight(_text_:information in 3064) [ClassicSimilarity], result of:
              0.0078932345 = score(doc=3064,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1551638 = fieldWeight in 3064, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3064)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The Resource Description Framework (RDF) is a language for representing information about resources in the World Wide Web. This Primer is designed to provide the reader with the basic knowledge required to effectively use RDF. It introduces the basic concepts of RDF and describes its XML syntax. It describes how to define RDF vocabularies using the RDF Vocabulary Description Language, and gives an overview of some deployed RDF applications. It also describes the content and purpose of other RDF specification documents.
  16. Resource Description Framework (RDF) : Concepts and Abstract Syntax (2004) 0.00
    2.6310782E-4 = product of:
      0.0039466172 = sum of:
        0.0039466172 = product of:
          0.0078932345 = sum of:
            0.0078932345 = weight(_text_:information in 3067) [ClassicSimilarity], result of:
              0.0078932345 = score(doc=3067,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1551638 = fieldWeight in 3067, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3067)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The Resource Description Framework (RDF) is a framework for representing information in the Web. RDF Concepts and Abstract Syntax defines an abstract syntax on which RDF is based, and which serves to link its concrete syntax to its formal semantics. It also includes discussion of design goals, key concepts, datatyping, character normalization and handling of URI references.
  17. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.00
    2.3255666E-4 = product of:
      0.0034883497 = sum of:
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 2208) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=2208,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 2208, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2208)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  18. OWL 2 Web Ontology Language Document Overview (2009) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 3060) [ClassicSimilarity], result of:
              0.00690658 = score(doc=3060,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 3060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3060)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. This document serves as an introduction to OWL 2 and the various other OWL 2 documents. It describes the syntaxes for OWL 2, the different kinds of semantics, the available profiles (sub-languages), and the relationship between OWL 1 and OWL 2.
  19. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 4803) [ClassicSimilarity], result of:
              0.00690658 = score(doc=4803,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 4803, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4803)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Thanks to the recent Linked Data initiative, the foundations of the Semantic Web have been built. Shared, open and linked RDF datasets give us the possibility to exploit both the strong theoretical results and the robust technologies and tools developed since the seminal paper in the Semantic Web appeared in 2001. In a simplistic way, we may think at the Semantic Web as a ultra large distributed database we can query to get information coming from different sources. In fact, every dataset exposes a SPARQL endpoint to make the data accessible through exact queries. If we know the URI of the famous actress Nicole Kidman in DBpedia we may retrieve all the movies she acted with a simple SPARQL query. Eventually we may aggregate this information with users ratings and genres from IMDB. Even though these are very exciting results and applications, there is much more behind the curtains. Datasets come with the description of their schema structured in an ontological way. Resources refer to classes which are in turn organized in well structured and rich ontologies. Exploiting also this further feature we go beyond the notion of a distributed database and we can refer to the Semantic Web as a distributed knowledge base. If in our knowledge base we have that Paris is located in France (ontological level) and that Moulin Rouge! is set in Paris (data level) we may query the Semantic Web (interpreted as a set of interconnected datasets and related ontologies) to return all the movies starred by Nicole Kidman set in France and Moulin Rouge! will be in the final result set. The ontological level makes possible to infer new relations among data.
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  20. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.00
    1.993758E-4 = product of:
      0.002990637 = sum of:
        0.002990637 = product of:
          0.005981274 = sum of:
            0.005981274 = weight(_text_:information in 3062) [ClassicSimilarity], result of:
              0.005981274 = score(doc=3062,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.11757882 = fieldWeight in 3062, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.