Search (63 results, page 1 of 4)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.30
    0.30459484 = product of:
      0.42643276 = sum of:
        0.041230045 = product of:
          0.12369013 = sum of:
            0.12369013 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.12369013 = score(doc=701,freq=2.0), product of:
                0.3301232 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.038938753 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.12369013 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12369013 = score(doc=701,freq=2.0), product of:
            0.3301232 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038938753 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12369013 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12369013 = score(doc=701,freq=2.0), product of:
            0.3301232 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038938753 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.014132325 = weight(_text_:with in 701) [ClassicSimilarity], result of:
          0.014132325 = score(doc=701,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15061069 = fieldWeight in 701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12369013 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12369013 = score(doc=701,freq=2.0), product of:
            0.3301232 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038938753 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.71428573 = coord(5/7)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. OWL Web Ontology Language Overview (2004) 0.02
    0.021074913 = product of:
      0.07376219 = sum of:
        0.014989593 = weight(_text_:with in 4682) [ClassicSimilarity], result of:
          0.014989593 = score(doc=4682,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 4682, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4682)
        0.058772597 = product of:
          0.117545195 = sum of:
            0.117545195 = weight(_text_:humans in 4682) [ClassicSimilarity], result of:
              0.117545195 = score(doc=4682,freq=2.0), product of:
                0.26276368 = queryWeight, product of:
                  6.7481275 = idf(docFreq=140, maxDocs=44218)
                  0.038938753 = queryNorm
                0.44734186 = fieldWeight in 4682, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.7481275 = idf(docFreq=140, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4682)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax.
  3. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.01
    0.011939922 = product of:
      0.041789725 = sum of:
        0.025962738 = weight(_text_:with in 2024) [ClassicSimilarity], result of:
          0.025962738 = score(doc=2024,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 2024, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=2024)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.031653978 = score(doc=2024,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  4. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.011739651 = product of:
      0.041088775 = sum of:
        0.019986123 = weight(_text_:with in 3376) [ClassicSimilarity], result of:
          0.019986123 = score(doc=3376,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.21299566 = fieldWeight in 3376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0625 = fieldNorm(doc=3376)
        0.021102654 = product of:
          0.042205308 = sum of:
            0.042205308 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.042205308 = score(doc=3376,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This chapter presents ontologies and their role in the creation of the Semantic Web. Ontologies hold special interest, because they are very closely related to the way we understand the world. They provide common understanding, the very first step to successful communication. In following sections, we will present ontologies, how they are created and used. We will describe available tools for specifying and working with ontologies.
    Date
    31. 7.2010 16:58:22
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.009949936 = product of:
      0.034824774 = sum of:
        0.021635616 = weight(_text_:with in 4553) [ClassicSimilarity], result of:
          0.021635616 = score(doc=4553,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2305746 = fieldWeight in 4553, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.013189158 = product of:
          0.026378317 = sum of:
            0.026378317 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.026378317 = score(doc=4553,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  6. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.008804738 = product of:
      0.030816581 = sum of:
        0.014989593 = weight(_text_:with in 2418) [ClassicSimilarity], result of:
          0.014989593 = score(doc=2418,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 2418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.031653978 = score(doc=2418,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  7. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.008724986 = product of:
      0.030537449 = sum of:
        0.019986123 = weight(_text_:with in 1634) [ClassicSimilarity], result of:
          0.019986123 = score(doc=1634,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.21299566 = fieldWeight in 1634, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.010551327 = product of:
          0.021102654 = sum of:
            0.021102654 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.021102654 = score(doc=1634,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  8. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.01
    0.008301187 = product of:
      0.029054154 = sum of:
        0.014132325 = weight(_text_:with in 2654) [ClassicSimilarity], result of:
          0.014132325 = score(doc=2654,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15061069 = fieldWeight in 2654, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.014921829 = product of:
          0.029843658 = sum of:
            0.029843658 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.029843658 = score(doc=2654,freq=4.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  9. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia (2007) 0.00
    0.004282741 = product of:
      0.029979186 = sum of:
        0.029979186 = weight(_text_:with in 3403) [ClassicSimilarity], result of:
          0.029979186 = score(doc=3403,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3194935 = fieldWeight in 3403, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3403)
      0.14285715 = coord(1/7)
    
    Abstract
    We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships - and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.
  10. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet (2008) 0.00
    0.004282741 = product of:
      0.029979186 = sum of:
        0.029979186 = weight(_text_:with in 3404) [ClassicSimilarity], result of:
          0.029979186 = score(doc=3404,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3194935 = fieldWeight in 3404, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3404)
      0.14285715 = coord(1/7)
    
    Abstract
    This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as semantic relations between entities. The facts for YAGO have been extracted from the category system and the infoboxes of Wikipedia and have been combined with taxonomic relations from WordNet. Type checking techniques help us keep YAGO's precision at 95%-as proven by an extensive evaluation study. YAGO is based on a clean logical model with a decidable consistency. Furthermore, it allows representing n-ary relations in a natural way while maintaining compatibility with RDFS. A powerful query model facilitates access to YAGO's data.
  11. Schmitz-Esser, W.; Sigel, A.: Introducing terminology-based ontologies : Papers and Materials presented by the authors at the workshop "Introducing Terminology-based Ontologies" (Poli/Schmitz-Esser/Sigel) at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006 (2006) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 1285) [ClassicSimilarity], result of:
          0.025962738 = score(doc=1285,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 1285, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=1285)
      0.14285715 = coord(1/7)
    
    Abstract
    This work-in-progress communication contains the papers and materials presented by Winfried Schmitz-Esser and Alexander Sigel in the joint workshop (with Roberto Poli) "Introducing Terminology-based Ontologies" at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006.
    Content
    Inhalt: 1. From traditional Knowledge Organization Systems (authority files, classifications, thesauri) towards ontologies on the web (Alexander Sigel) (Tutorial. Paper with Slides interspersed) pp. 3-53 2. Introduction to Integrative Cross-Language Ontology (ICLO): Formalizing and interrelating textual knowledge to enable intelligent action and knowledge sharing (Winfried Schmitz-Esser) pp. 54-113 3. First Idea Sketch on Modelling ICLO with Topic Maps (Alexander Sigel) (Work in progress paper. Topic maps available from the author) pp. 114-130
  12. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 4316) [ClassicSimilarity], result of:
          0.025962738 = score(doc=4316,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 4316, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4316)
      0.14285715 = coord(1/7)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RDF annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  13. Iosif, V.; Mika, P.; Larsson, R.; Akkermans, H.: Field experimenting with Semantic Web tools in a virtual organization (2004) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 4412) [ClassicSimilarity], result of:
          0.025962738 = score(doc=4412,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 4412, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4412)
      0.14285715 = coord(1/7)
    
    Abstract
    How do we test Semantic Web tools? How can we know that they perform better than current technologies for knowledge management? What does 'better' precisely mean? How can we operationalize and measure this? Some of these questions may be partially answered by simulations in lab experiments that for example look at the speed or scalability of algorithms. However, it is not clear in advance to what extent such laboratory results carry over to the real world. Quality is in the eye of the beholder, and so the quality of Semantic Web methods will very much depend on the perception of their usefulness as seen by tool users. This can only be tested by carefully designed field experiments. In this chapter, we discuss the design considerations and set-up of field experiments with Semantic Web tools, and illustrate these with case examples from a virtual organization in industrial research.
  14. SKOS Simple Knowledge Organization System Primer (2009) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 4795) [ClassicSimilarity], result of:
          0.025962738 = score(doc=4795,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 4795, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
      0.14285715 = coord(1/7)
    
    Abstract
    SKOS (Simple Knowledge Organisation System) provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, and other types of controlled vocabulary. As an application of the Resource Description Framework (RDF) SKOS allows concepts to be documented, linked and merged with other data, while still being composed, integrated and published on the World Wide Web. This document is an implementors guide for those who would like to represent their concept scheme using SKOS. In basic SKOS, conceptual resources (concepts) can be identified using URIs, labelled with strings in one or more natural languages, documented with various types of notes, semantically related to each other in informal hierarchies and association networks, and aggregated into distinct concept schemes. In advanced SKOS, conceptual resources can be mapped to conceptual resources in other schemes and grouped into labelled or ordered collections. Concept labels can also be related to each other. Finally, the SKOS vocabulary itself can be extended to suit the needs of particular communities of practice.
  15. Mirizzi, R.; Noia, T. Di: From exploratory search to Web Search and back (2010) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 4802) [ClassicSimilarity], result of:
          0.025962738 = score(doc=4802,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 4802, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4802)
      0.14285715 = coord(1/7)
    
    Abstract
    The power of search is with no doubt one of the main aspects for the success of the Web. Currently available search engines on the Web allow to return results with a high precision. Nevertheless, if we limit our attention only to lookup search we are missing another important search task. In exploratory search, the user is willing not only to find documents relevant with respect to her query but she is also interested in learning, discovering and understanding novel knowledge on complex and sometimes unknown topics. In the paper we address this issue presenting LED, a web based system that aims to improve (lookup) Web search by enabling users to properly explore knowledge associated to her query. We rely on DBpedia to explore the semantics of keywords within the query thus suggesting potentially interesting related topics/keywords to the user.
  16. Sánchez, M.F.: Semantically enhanced Information Retrieval : an ontology-based approach (2006) 0.00
    0.003568951 = product of:
      0.024982655 = sum of:
        0.024982655 = weight(_text_:with in 4327) [ClassicSimilarity], result of:
          0.024982655 = score(doc=4327,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2662446 = fieldWeight in 4327, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
      0.14285715 = coord(1/7)
    
    Content
    Part I. Analyzing the state of the art - What is semantic search? Part II. The proposal - An ontology-based IR model - Semantic retrieval on the Web Part III. Extensions - Semantic knowledge gateway - Coping with knowledge incompleteness
  17. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.00
    0.003568951 = product of:
      0.024982655 = sum of:
        0.024982655 = weight(_text_:with in 3934) [ClassicSimilarity], result of:
          0.024982655 = score(doc=3934,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2662446 = fieldWeight in 3934, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.14285715 = coord(1/7)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
  18. Rousset, M.-C.; Atencia, M.; David, J.; Jouanot, F.; Ulliana, F.; Palombi, O.: Datalog revisited for reasoning in linked data (2017) 0.00
    0.003568951 = product of:
      0.024982655 = sum of:
        0.024982655 = weight(_text_:with in 3936) [ClassicSimilarity], result of:
          0.024982655 = score(doc=3936,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2662446 = fieldWeight in 3936, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3936)
      0.14285715 = coord(1/7)
    
    Abstract
    Linked Data provides access to huge, continuously growing amounts of open data and ontologies in RDF format that describe entities, links and properties on those entities. Equipping Linked Data with inference paves the way to make the Semantic Web a reality. In this survey, we describe a unifying framework for RDF ontologies and databases that we call deductive RDF triplestores. It consists in equipping RDF triplestores with Datalog inference rules. This rule language allows to capture in a uniform manner OWL constraints that are useful in practice, such as property transitivity or symmetry, but also domain-specific rules with practical relevance for users in many domains of interest. The expressivity and the genericity of this framework is illustrated for modeling Linked Data applications and for developing inference algorithms. In particular, we show how it allows to model the problem of data linkage in Linked Data as a reasoning problem on possibly decentralized data. We also explain how it makes possible to efficiently extract expressive modules from Semantic Web ontologies and databases with formal guarantees, whilst effectively controlling their succinctness. Experiments conducted on real-world datasets have demonstrated the feasibility of this approach and its usefulness in practice for data integration and information extraction.
  19. OWL 2 Web Ontology Language Document Overview (2009) 0.00
    0.0035330812 = product of:
      0.024731567 = sum of:
        0.024731567 = weight(_text_:with in 3060) [ClassicSimilarity], result of:
          0.024731567 = score(doc=3060,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2635687 = fieldWeight in 3060, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3060)
      0.14285715 = coord(1/7)
    
    Abstract
    The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. This document serves as an introduction to OWL 2 and the various other OWL 2 documents. It describes the syntaxes for OWL 2, the different kinds of semantics, the available profiles (sub-languages), and the relationship between OWL 1 and OWL 2.
  20. Best Practice Recipes for Publishing RDF Vocabularies (2008) 0.00
    0.0035330812 = product of:
      0.024731567 = sum of:
        0.024731567 = weight(_text_:with in 4471) [ClassicSimilarity], result of:
          0.024731567 = score(doc=4471,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2635687 = fieldWeight in 4471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
      0.14285715 = coord(1/7)
    
    Abstract
    This document describes best practice recipes for publishing vocabularies or ontologies on the Web (in RDF Schema or OWL). The features of each recipe are described in detail, so that vocabulary designers may choose the recipe best suited to their needs. Each recipe introduces general principles and an example configuration for use with an Apache HTTP server (which may be adapted to other environments). The recipes are all designed to be consistent with the architecture of the Web as currently specified, although the associated example configurations have been kept intentionally simple.

Years

Types

  • a 38
  • el 30
  • n 5
  • m 3
  • x 2
  • r 1
  • s 1
  • More… Less…