Search (21 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.10
    0.098102 = product of:
      0.196204 = sum of:
        0.049051 = product of:
          0.147153 = sum of:
            0.147153 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.147153 = score(doc=701,freq=2.0), product of:
                0.3927445 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046325076 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.147153 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.147153 = score(doc=701,freq=2.0), product of:
            0.3927445 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046325076 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(2/4)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.05
    0.054187015 = product of:
      0.10837403 = sum of:
        0.09007573 = weight(_text_:social in 4515) [ClassicSimilarity], result of:
          0.09007573 = score(doc=4515,freq=20.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.48762095 = fieldWeight in 4515, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.018298302 = product of:
          0.036596604 = sum of:
            0.036596604 = weight(_text_:aspects in 4515) [ClassicSimilarity], result of:
              0.036596604 = score(doc=4515,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.17478286 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    RSWK
    Social Tagging
    Subject
    Social Tagging
  3. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.03
    0.03341625 = product of:
      0.0668325 = sum of:
        0.040692065 = weight(_text_:social in 4706) [ClassicSimilarity], result of:
          0.040692065 = score(doc=4706,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 4706, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 4706) [ClassicSimilarity], result of:
              0.052280862 = score(doc=4706,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  4. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.03
    0.03189509 = product of:
      0.06379018 = sum of:
        0.04603782 = weight(_text_:social in 2654) [ClassicSimilarity], result of:
          0.04603782 = score(doc=2654,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.24922368 = fieldWeight in 2654, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.017752362 = product of:
          0.035504725 = sum of:
            0.035504725 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.035504725 = score(doc=2654,freq=4.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  5. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.03
    0.026733 = product of:
      0.053466 = sum of:
        0.032553654 = weight(_text_:social in 4707) [ClassicSimilarity], result of:
          0.032553654 = score(doc=4707,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 4707, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.020912344 = product of:
          0.041824687 = sum of:
            0.041824687 = weight(_text_:aspects in 4707) [ClassicSimilarity], result of:
              0.041824687 = score(doc=4707,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19975184 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  6. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.016732581 = product of:
      0.066930324 = sum of:
        0.066930324 = sum of:
          0.041824687 = weight(_text_:aspects in 1634) [ClassicSimilarity], result of:
            0.041824687 = score(doc=1634,freq=2.0), product of:
              0.20938325 = queryWeight, product of:
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.046325076 = queryNorm
              0.19975184 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.025105633 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.025105633 = score(doc=1634,freq=2.0), product of:
              0.16222252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046325076 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  7. Miles, A.: SKOS: requirements for standardization (2006) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 5703) [ClassicSimilarity], result of:
          0.04883048 = score(doc=5703,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 5703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=5703)
      0.25 = coord(1/4)
    
    Abstract
    This paper poses three questions regarding the planned development of the Simple Knowledge Organisation System (SKOS) towards W3C Recommendation status. Firstly, what is the fundamental purpose and therefore scope of SKOS? Secondly, which key software components depend on SKOS, and how do they interact? Thirdly, what is the wider technological and social context in which SKOS is likely to be applied and how might this influence design goals? Some tentative conclusions are drawn and in particular it is suggested that the scope of SKOS be restricted to the formal representation of controlled structured vocabularies intended for use within retrieval applications. However, the main purpose of this paper is to articulate the assumptions that have motivated the design of SKOS, so that these may be reviewed prior to a rigorous standardization initiative.
  8. Breslin, J.G.: Social semantic information spaces (2009) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 3377) [ClassicSimilarity], result of:
          0.040692065 = score(doc=3377,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 3377, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3377)
      0.25 = coord(1/4)
    
  9. Mirizzi, R.; Noia, T. Di: From exploratory search to Web Search and back (2010) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 4802) [ClassicSimilarity], result of:
              0.06273703 = score(doc=4802,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 4802, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4802)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The power of search is with no doubt one of the main aspects for the success of the Web. Currently available search engines on the Web allow to return results with a high precision. Nevertheless, if we limit our attention only to lookup search we are missing another important search task. In exploratory search, the user is willing not only to find documents relevant with respect to her query but she is also interested in learning, discovering and understanding novel knowledge on complex and sometimes unknown topics. In the paper we address this issue presenting LED, a web based system that aims to improve (lookup) Web search by enabling users to properly explore knowledge associated to her query. We rely on DBpedia to explore the semantics of keywords within the query thus suggesting potentially interesting related topics/keywords to the user.
  10. Baroncini, S.; Sartini, B.; Erp, M. Van; Tomasi, F.; Gangemi, A.: Is dc:subject enough? : A landscape on iconography and iconology statements of knowledge graphs in the semantic web (2023) 0.01
    0.0073936307 = product of:
      0.029574523 = sum of:
        0.029574523 = product of:
          0.059149045 = sum of:
            0.059149045 = weight(_text_:aspects in 1030) [ClassicSimilarity], result of:
              0.059149045 = score(doc=1030,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.28249177 = fieldWeight in 1030, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1030)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In the last few years, the size of Linked Open Data (LOD) describing artworks, in general or domain-specific Knowledge Graphs (KGs), is gradually increasing. This provides (art-)historians and Cultural Heritage professionals with a wealth of information to explore. Specifically, structured data about iconographical and iconological (icon) aspects, i.e. information about the subjects, concepts and meanings of artworks, are extremely valuable for the state-of-the-art of computational tools, e.g. content recognition through computer vision. Nevertheless, a data quality evaluation for art domains, fundamental for data reuse, is still missing. The purpose of this study is filling this gap with an overview of art-historical data quality in current KGs with a focus on the icon aspects. Design/methodology/approach This study's analyses are based on established KG evaluation methodologies, adapted to the domain by addressing requirements from art historians' theories. The authors first select several KGs according to Semantic Web principles. Then, the authors evaluate (1) their structures' suitability to describe icon information through quantitative and qualitative assessment and (2) their content, qualitatively assessed in terms of correctness and completeness. Findings This study's results reveal several issues on the current expression of icon information in KGs. The content evaluation shows that these domain-specific statements are generally correct but often not complete. The incompleteness is confirmed by the structure evaluation, which highlights the unsuitability of the KG schemas to describe icon information with the required granularity. Originality/value The main contribution of this work is an overview of the actual landscape of the icon information expressed in LOD. Therefore, it is valuable to cultural institutions by providing them a first domain-specific data quality evaluation. Since this study's results suggest that the selected domain information is underrepresented in Semantic Web datasets, the authors highlight the need for the creation and fostering of such information to provide a more thorough art-historical dimension to LOD.
  11. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.01
    0.0071211113 = product of:
      0.028484445 = sum of:
        0.028484445 = weight(_text_:social in 3062) [ClassicSimilarity], result of:
          0.028484445 = score(doc=3062,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.15419927 = fieldWeight in 3062, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
      0.25 = coord(1/4)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
  12. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.01
    0.0071211113 = product of:
      0.028484445 = sum of:
        0.028484445 = weight(_text_:social in 4803) [ClassicSimilarity], result of:
          0.028484445 = score(doc=4803,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.15419927 = fieldWeight in 4803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
      0.25 = coord(1/4)
    
    Abstract
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  13. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.050211266 = score(doc=3376,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    31. 7.2010 16:58:22
  14. OWL Web Ontology Language Test Cases (2004) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.050211266 = score(doc=4685,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 8.2011 13:33:22
  15. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.005491857 = product of:
      0.021967428 = sum of:
        0.021967428 = product of:
          0.043934856 = sum of:
            0.043934856 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.043934856 = score(doc=4330,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    12. 2.2011 17:35:22
  16. Sure, Y.; Erdmann, M.; Studer, R.: OntoEdit: collaborative engineering of ontologies (2004) 0.01
    0.005228086 = product of:
      0.020912344 = sum of:
        0.020912344 = product of:
          0.041824687 = sum of:
            0.041824687 = weight(_text_:aspects in 4405) [ClassicSimilarity], result of:
              0.041824687 = score(doc=4405,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19975184 = fieldWeight in 4405, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4405)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Developing ontologies is central to our vision of Semantic Web-based knowledge management. The methodology described in Chapter 3 guides the development of ontologies for different applications. However, because of the size of ontologies, their complexity, their formal underpinnings and the necessity to come towards a shared understanding within a group of people when defining an ontology, ontology construction is still far from being a well-understood process. Concerning the methodology, OntoEdit focuses on three of the main steps for ontology development (the methodology is described in Chapter 3), viz. the kick off, refinement, and evaluation. We describe the steps supported by OntoEdit and focus on collaborative aspects that occur during each of the step. First, all requirements of the envisaged ontology are collected during the kick off phase. Typically for ontology engineering, ontology engineers and domain experts are joined in a team that works together on a description of the domain and the goal of the ontology, design guidelines, available knowledge sources (e.g. re-usable ontologies and thesauri, etc.), potential users and use cases and applications supported by the ontology. The output of this phase is a semiformal description of the ontology. Second, during the refinement phase, the team extends the semi-formal description in several iterations and formalizes it in an appropriate representation language like RDF(S) or, more advanced, DAML1OIL. The output of this phase is a mature ontology (the 'target ontology'). Third, the target ontology needs to be evaluated according to the requirement specifications. Typically this phase serves as a proof for the usefulness of ontologies (and ontology-based applications) and may involve the engineering team as well as end users of the targeted application. The output of this phase is an evaluated ontology, ready for roll-out into a productive environment. Support for these collaborative development steps within the ontology development methodology is crucial in order to meet the conflicting needs for ease of use and construction of complex ontology structures. We now illustrate OntoEdit's support for each of the supported steps. The examples shown are taken from the Swiss Life case study on skills management (cf. Chapter 12).
  17. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2418,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  18. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.03765845 = score(doc=4649,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:40:22
  19. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.00
    0.004707306 = product of:
      0.018829225 = sum of:
        0.018829225 = product of:
          0.03765845 = sum of:
            0.03765845 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.03765845 = score(doc=2024,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  20. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.00
    0.0045745755 = product of:
      0.018298302 = sum of:
        0.018298302 = product of:
          0.036596604 = sum of:
            0.036596604 = weight(_text_:aspects in 517) [ClassicSimilarity], result of:
              0.036596604 = score(doc=517,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.17478286 = fieldWeight in 517, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=517)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    "Textual content-based search engines for the web have a number of limitations. Firstly, many web resources have little or no textual content (images, audio or video streams etc.) Secondly, precision is low where natural language terms have overloaded meaning (e.g. 'bank', 'watch', 'chip' etc.) Thirdly, recall is incomplete where the search does not take account of synonyms or quasi-synonyms. Fourthly, there is no basis for assisting a user in modifying (expanding, refining, translating) a search based on the meaning of the original search. Fifthly, there is no basis for searching across natural languages, or framing search queries in terms of symbolic languages. The Semantic Web is a framework for creating, managing, publishing and searching semantically rich metadata for web resources. Annotating web resources with precise and meaningful statements about conceptual aspects of their content provides a basis for overcoming all of the limitations of textual content-based search engines listed above. Creating this type of metadata requires that metadata generators are able to refer to shared repositories of meaning: 'vocabularies' of concepts that are common to a community, and describe the domain of interest for that community.