Search (151 results, page 1 of 8)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  1. Gibbins, N.; Shadbolt, N.: Resource Description Framework (RDF) (2009) 0.08
    0.08254977 = product of:
      0.123824656 = sum of:
        0.07707474 = weight(_text_:wide in 4695) [ClassicSimilarity], result of:
          0.07707474 = score(doc=4695,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.342674 = fieldWeight in 4695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
        0.046749923 = product of:
          0.09349985 = sum of:
            0.09349985 = weight(_text_:web in 4695) [ClassicSimilarity], result of:
              0.09349985 = score(doc=4695,freq=10.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.5643819 = fieldWeight in 4695, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4695)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Resource Description Framework (RDF) is the standard knowledge representation language for the Semantic Web, an evolution of the World Wide Web that aims to provide a well-founded infrastructure for publishing, sharing and querying structured data. This entry provides an introduction to RDF and its related vocabulary definition language RDF Schema, and explains its relationship with the OWL Web Ontology Language. Finally, it provides an overview of the historical development of RDF and related languages for Web metadata.
    Theme
    Semantic Web
  2. Matthews, B.M.: Integration via meaning : using the Semantic Web to deliver Web services (2002) 0.08
    0.08182235 = product of:
      0.12273352 = sum of:
        0.06606405 = weight(_text_:wide in 3609) [ClassicSimilarity], result of:
          0.06606405 = score(doc=3609,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 3609, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
        0.056669466 = product of:
          0.11333893 = sum of:
            0.11333893 = weight(_text_:web in 3609) [ClassicSimilarity], result of:
              0.11333893 = score(doc=3609,freq=20.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.6841342 = fieldWeight in 3609, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3609)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The major developments ofthe World-Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources an the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure.
    Theme
    Semantic Web
  3. Neubauer, G.: Visualization of typed links in linked data (2017) 0.08
    0.08006412 = product of:
      0.12009617 = sum of:
        0.07785724 = weight(_text_:wide in 3912) [ClassicSimilarity], result of:
          0.07785724 = score(doc=3912,freq=4.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.34615302 = fieldWeight in 3912, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
        0.04223893 = product of:
          0.08447786 = sum of:
            0.08447786 = weight(_text_:web in 3912) [ClassicSimilarity], result of:
              0.08447786 = score(doc=3912,freq=16.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.5099235 = fieldWeight in 3912, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Das Themengebiet der Arbeit behandelt Visualisierungen von typisierten Links in Linked Data. Die wissenschaftlichen Gebiete, die im Allgemeinen den Inhalt des Beitrags abgrenzen, sind das Semantic Web, das Web of Data und Informationsvisualisierung. Das Semantic Web, das von Tim Berners Lee 2001 erfunden wurde, stellt eine Erweiterung zum World Wide Web (Web 2.0) dar. Aktuelle Forschungen beziehen sich auf die Verknüpfbarkeit von Informationen im World Wide Web. Um es zu ermöglichen, solche Verbindungen wahrnehmen und verarbeiten zu können sind Visualisierungen die wichtigsten Anforderungen als Hauptteil der Datenverarbeitung. Im Zusammenhang mit dem Sematic Web werden Repräsentationen von zusammenhängenden Informationen anhand von Graphen gehandhabt. Der Grund des Entstehens dieser Arbeit ist in erster Linie die Beschreibung der Gestaltung von Linked Data-Visualisierungskonzepten, deren Prinzipien im Rahmen einer theoretischen Annäherung eingeführt werden. Anhand des Kontexts führt eine schrittweise Erweiterung der Informationen mit dem Ziel, praktische Richtlinien anzubieten, zur Vernetzung dieser ausgearbeiteten Gestaltungsrichtlinien. Indem die Entwürfe zweier alternativer Visualisierungen einer standardisierten Webapplikation beschrieben werden, die Linked Data als Netzwerk visualisiert, konnte ein Test durchgeführt werden, der deren Kompatibilität zum Inhalt hatte. Der praktische Teil behandelt daher die Designphase, die Resultate, und zukünftige Anforderungen des Projektes, die durch die Testung ausgearbeitet wurden.
    Theme
    Semantic Web
  4. Harper, C.A.; Tillett, B.B.: Library of Congress controlled vocabularies and their application to the Semantic Web (2006) 0.08
    0.07988362 = product of:
      0.11982542 = sum of:
        0.06606405 = weight(_text_:wide in 242) [ClassicSimilarity], result of:
          0.06606405 = score(doc=242,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
        0.053761374 = product of:
          0.10752275 = sum of:
            0.10752275 = weight(_text_:web in 242) [ClassicSimilarity], result of:
              0.10752275 = score(doc=242,freq=18.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.64902663 = fieldWeight in 242, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=242)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article discusses how various controlled vocabularies, classification schemes and thesauri can serve as some of the building blocks of the Semantic Web. These vocabularies have been developed over the course of decades, and can be put to great use in the development of robust web services and Semantic Web technologies. The article covers how initial collaboration between the Semantic Web, Library and Metadata communities are creating partnerships to complete work in this area. It then discusses some cores principles of authority control before talking more specifically about subject and genre vocabularies and name authority. It is hoped that future systems for internationally shared authority data will link the world's authority data from trusted sources to benefit users worldwide. Finally, the article looks at how encoding and markup of vocabularies can help ensure compatibility with the current and future state of Semantic Web development and provides examples of how this work can help improve the findability and navigation of information on the World Wide Web.
    Footnote
    Simultaneously published as Knitting the Semantic Web
    Theme
    Semantic Web
  5. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.08
    0.077833846 = product of:
      0.11675076 = sum of:
        0.06606405 = weight(_text_:wide in 1638) [ClassicSimilarity], result of:
          0.06606405 = score(doc=1638,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 1638, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
        0.05068671 = product of:
          0.10137342 = sum of:
            0.10137342 = weight(_text_:web in 1638) [ClassicSimilarity], result of:
              0.10137342 = score(doc=1638,freq=16.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.6119082 = fieldWeight in 1638, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1638)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
    Source
    Web semantics: science, services and agents on the World Wide Web. 7(2009) no.3, S.177-188
    Theme
    Semantic Web
  6. Campbell, D.G.: Derrida, logocentrism, and the concept of warrant on the Semantic Web (2008) 0.07
    0.0711902 = product of:
      0.1067853 = sum of:
        0.055053383 = weight(_text_:wide in 2507) [ClassicSimilarity], result of:
          0.055053383 = score(doc=2507,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 2507, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2507)
        0.05173191 = product of:
          0.10346382 = sum of:
            0.10346382 = weight(_text_:web in 2507) [ClassicSimilarity], result of:
              0.10346382 = score(doc=2507,freq=24.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.6245262 = fieldWeight in 2507, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2507)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    The highly-structured data standards of the Semantic Web contain a promising venue for the migration of library subject access standards onto the World Wide Web. The new functionalities of the Web, however, along with the anticipated capabilities of intelligent Web agents, suggest that information on the Semantic Web will have much more flexibility, diversity and mutability. We need, therefore, a method for recognizing and assessing the principles whereby Semantic Web information can combine together in productive and useful ways. This paper will argue that the concept of warrant in traditional library science, can provide a useful means of translating library knowledge structures into Web-based knowledge structures. Using Derrida's concept of logocentrism, this paper suggests that what while "warrant" in library science traditionally alludes to the principles by which concepts are admitted into the design of a classification or access system, "warrant" on the Semantic Web alludes to the principles by which Web resources can be admitted into a network of information uses. Furthermore, library information practice suggests a far more complex network of warrant concepts that provide a subtlety and richness to knowledge organization that the Semantic Web has not yet attained.
    Theme
    Semantic Web
  7. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.07
    0.07022996 = product of:
      0.105344936 = sum of:
        0.044042703 = weight(_text_:wide in 1634) [ClassicSimilarity], result of:
          0.044042703 = score(doc=1634,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.1958137 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.061302237 = sum of:
          0.033791143 = weight(_text_:web in 1634) [ClassicSimilarity], result of:
            0.033791143 = score(doc=1634,freq=4.0), product of:
              0.1656677 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.050763648 = queryNorm
              0.2039694 = fieldWeight in 1634, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.027511096 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.027511096 = score(doc=1634,freq=2.0), product of:
              0.17776565 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050763648 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantic Web
  8. Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hellmann, S.: DBpedia: a crystallization point for the Web of Data. (2009) 0.07
    0.06972195 = product of:
      0.10458292 = sum of:
        0.055053383 = weight(_text_:wide in 1643) [ClassicSimilarity], result of:
          0.055053383 = score(doc=1643,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 1643, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1643)
        0.049529534 = product of:
          0.09905907 = sum of:
            0.09905907 = weight(_text_:web in 1643) [ClassicSimilarity], result of:
              0.09905907 = score(doc=1643,freq=22.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.59793836 = fieldWeight in 1643, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1643)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The DBpedia project is a community effort to extract structured information from Wikipedia and to make this information accessible on the Web. The resulting DBpedia knowledge base currently describes over 2.6 million entities. For each of these entities, DBpedia defines a globally unique identifier that can be dereferenced over the Web into a rich RDF description of the entity, including human-readable definitions in 30 languages, relationships to other resources, classifications in four concept hierarchies, various facts as well as data-level links to other Web data sources describing the entity. Over the last year, an increasing number of data publishers have begun to set data-level links to DBpedia resources, making DBpedia a central interlinking hub for the emerging Web of data. Currently, the Web of interlinked data sources around DBpedia provides approximately 4.7 billion pieces of information and covers domains suc as geographic information, people, companies, films, music, genes, drugs, books, and scientific publications. This article describes the extraction of the DBpedia knowledge base, the current status of interlinking DBpedia with other data sources on the Web, and gives an overview of applications that facilitate the Web of Data around DBpedia.
    Source
    Journal of Web semantics: science, services and agents on the World Wide Web, no.7, S.154-165
    Theme
    Semantic Web
  9. Oliveira Machado, L.M.; Souza, R.R.; Simões, M. da Graça: Semantic web or web of data? : a diachronic study (1999 to 2017) of the publications of Tim Berners-Lee and the World Wide Web Consortium (2019) 0.07
    0.06972195 = product of:
      0.10458292 = sum of:
        0.055053383 = weight(_text_:wide in 5300) [ClassicSimilarity], result of:
          0.055053383 = score(doc=5300,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 5300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5300)
        0.049529534 = product of:
          0.09905907 = sum of:
            0.09905907 = weight(_text_:web in 5300) [ClassicSimilarity], result of:
              0.09905907 = score(doc=5300,freq=22.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.59793836 = fieldWeight in 5300, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5300)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The web has been, in the last decades, the place where information retrieval achieved its maximum importance, given its ubiquity and the sheer volume of information. However, its exponential growth made the retrieval task increasingly hard, relying in its effectiveness on idiosyncratic and somewhat biased ranking algorithms. To deal with this problem, a "new" web, called the Semantic Web (SW), was proposed, bringing along concepts like "Web of Data" and "Linked Data," although the definitions and connections among these concepts are often unclear. Based on a qualitative approach built over a literature review, a definition of SW is presented, discussing the related concepts sometimes used as synonyms. It concludes that the SW is a comprehensive and ambitious construct that includes the great purpose of making the web a global database. It also follows the specifications developed and/or associated with its operationalization and the necessary procedures for the connection of data in an open format on the web. The goals of this comprehensive SW are the union of two outcomes still tenuously connected: the virtually unlimited possibility of connections between data-the web domain-with the potentiality of the automated inference of "intelligent" systems-the semantic component.
    Theme
    Semantic Web
  10. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.07
    0.06793665 = product of:
      0.10190497 = sum of:
        0.06606405 = weight(_text_:wide in 229) [ClassicSimilarity], result of:
          0.06606405 = score(doc=229,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 229, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=229)
        0.035840917 = product of:
          0.071681835 = sum of:
            0.071681835 = weight(_text_:web in 229) [ClassicSimilarity], result of:
              0.071681835 = score(doc=229,freq=8.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.43268442 = fieldWeight in 229, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=229)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
    Source
    Web semantics: science, services and agents on the World Wide Web. 4(2006) no.1, S.14-28
    Theme
    Semantic Web
  11. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.07
    0.066569686 = product of:
      0.09985453 = sum of:
        0.055053383 = weight(_text_:wide in 6061) [ClassicSimilarity], result of:
          0.055053383 = score(doc=6061,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 6061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.044801146 = product of:
          0.08960229 = sum of:
            0.08960229 = weight(_text_:web in 6061) [ClassicSimilarity], result of:
              0.08960229 = score(doc=6061,freq=18.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.5408555 = fieldWeight in 6061, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6061)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
    Theme
    Semantic Web
  12. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.07
    0.066569686 = product of:
      0.09985453 = sum of:
        0.055053383 = weight(_text_:wide in 5997) [ClassicSimilarity], result of:
          0.055053383 = score(doc=5997,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.044801146 = product of:
          0.08960229 = sum of:
            0.08960229 = weight(_text_:web in 5997) [ClassicSimilarity], result of:
              0.08960229 = score(doc=5997,freq=18.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.5408555 = fieldWeight in 5997, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5997)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
    Theme
    Semantic Web
  13. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet (2008) 0.06
    0.06473547 = product of:
      0.0971032 = sum of:
        0.06606405 = weight(_text_:wide in 3404) [ClassicSimilarity], result of:
          0.06606405 = score(doc=3404,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 3404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3404)
        0.031039147 = product of:
          0.062078293 = sum of:
            0.062078293 = weight(_text_:web in 3404) [ClassicSimilarity], result of:
              0.062078293 = score(doc=3404,freq=6.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.37471575 = fieldWeight in 3404, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3404)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Web semantics: science, services and agents on the World Wide Web. 6(2008) no.3, S.203-217
    Theme
    Semantic Web
  14. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.06
    0.06473547 = product of:
      0.0971032 = sum of:
        0.06606405 = weight(_text_:wide in 761) [ClassicSimilarity], result of:
          0.06606405 = score(doc=761,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 761, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=761)
        0.031039147 = product of:
          0.062078293 = sum of:
            0.062078293 = weight(_text_:web in 761) [ClassicSimilarity], result of:
              0.062078293 = score(doc=761,freq=6.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.37471575 = fieldWeight in 761, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=761)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper, I have traced a series of evolutionary adaptations of FOL motivated entirely by its use by knowledge engineers to represent and share information on the Web culminating in the development of Common Logic. While the primary goal in this paper has been to document this evolution, it is arguable, I think that CL's syntactic and semantic egalitarianism better realizes the goal "topic neutrality" that a logic should ideally exemplify - understood, at least in part, as the idea that logic should as far as possible not itself embody any metaphysical presuppositions. Instead of retaining the traditional metaphysical divisions of FOL that reflect its Fregean origins, CL begins as it were with a single, metaphysically homogeneous domain in which, potentially, anything can play the traditional roles of object, property, relation, and function. Note that the effect of this is not to destroy traditional metaphysical divisions. Rather, it simply to refrain from building those divisions explicitly into one's logic; instead, such divisions are left to the user to introduce and enforce axiomatically in an explicit metaphysical theory.
    Theme
    Semantic Web
  15. Engels, R.H.P.; Lech, T.Ch.: Generating ontologies for the Semantic Web : OntoBuilder (2004) 0.06
    0.06315294 = product of:
      0.09472941 = sum of:
        0.044042703 = weight(_text_:wide in 4404) [ClassicSimilarity], result of:
          0.044042703 = score(doc=4404,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.1958137 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.05068671 = product of:
          0.10137342 = sum of:
            0.10137342 = weight(_text_:web in 4404) [ClassicSimilarity], result of:
              0.10137342 = score(doc=4404,freq=36.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.6119082 = fieldWeight in 4404, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4404)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Significant progress has been made in technologies for publishing and distributing knowledge and information on the web. However, much of the published information is not organized, and it is hard to find answers to questions that require more than a keyword search. In general, one can say that the web is organizing itself. Information is often published in relatively ad hoc fashion. Typically, concern about the presentation of content has been limited to purely layout issues. This, combined with the fact that the representation language used on the World Wide Web (HTML) is mainly format-oriented, makes publishing on the WWW easy, giving it an enormous expressiveness. People add private, educational or organizational content to the web that is of an immensely diverse nature. Content on the web is growing closer to a real universal knowledge base, with one problem relatively undefined; the problem of the interpretation of its contents. Although widely acknowledged for its general and universal advantages, the increasing popularity of the web also shows us some major drawbacks. The developments of the information content on the web during the last year alone, clearly indicates the need for some changes. Perhaps one of the most significant problems with the web as a distributed information system is the difficulty of finding and comparing information.
    Thus, there is a clear need for the web to become more semantic. The aim of introducing semantics into the web is to enhance the precision of search, but also enable the use of logical reasoning on web contents in order to answer queries. The CORPORUM OntoBuilder toolset is developed specifically for this task. It consists of a set of applications that can fulfil a variety of tasks, either as stand-alone tools, or augmenting each other. Important tasks that are dealt with by CORPORUM are related to document and information retrieval (find relevant documents, or support the user finding them), as well as information extraction (building a knowledge base from web documents to answer queries), information dissemination (summarizing strategies and information visualization), and automated document classification strategies. First versions of the toolset are encouraging in that they show large potential as a supportive technology for building up the Semantic Web. In this chapter, methods for transforming the current web into a semantic web are discussed, as well as a technical solution that can perform this task: the CORPORUM tool set. First, the toolset is introduced; followed by some pragmatic issues relating to the approach; then there will be a short overview of the theory in relation to CognIT's vision; and finally, a discussion on some of the applications that arose from the project.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  16. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.06
    0.06315294 = product of:
      0.09472941 = sum of:
        0.044042703 = weight(_text_:wide in 79) [ClassicSimilarity], result of:
          0.044042703 = score(doc=79,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.1958137 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.05068671 = product of:
          0.10137342 = sum of:
            0.10137342 = weight(_text_:web in 79) [ClassicSimilarity], result of:
              0.10137342 = score(doc=79,freq=36.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.6119082 = fieldWeight in 79, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Theme
    Semantic Web
  17. Michon, J.: Biomedicine and the Semantic Web : a knowledge model for visual phenotype (2006) 0.06
    0.061088912 = product of:
      0.091633365 = sum of:
        0.055053383 = weight(_text_:wide in 246) [ClassicSimilarity], result of:
          0.055053383 = score(doc=246,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.03657998 = product of:
          0.07315996 = sum of:
            0.07315996 = weight(_text_:web in 246) [ClassicSimilarity], result of:
              0.07315996 = score(doc=246,freq=12.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.4416067 = fieldWeight in 246, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=246)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantic Web tools provide new and significant opportunities for organizing and improving the utility of biomedical information. As librarians become more involved with biomedical information, it is important for them, particularly catalogers, to be part of research teams that are employing these techniques and developing a high level interoperable biomedical infrastructure. To illustrate these principles, we used Semantic Web tools to create a knowledge model for human visual phenotypes (observable characteristics). This is an important foundation for generating associations between genomics and clinical medicine. In turn this can allow customized medical therapies and provide insights into the molecular basis of disease. The knowledge model incorporates a wide variety of clinical and genomic data including examination findings, demographics, laboratory tests, imaging and variations in DNA sequence. Information organization, storage and retrieval are facilitated through the use of metadata and the ability to make computable statements in the visual science domain. This paper presents our work, discusses the value of Semantic Web technologies in biomedicine, and identifies several important roles that library and information scientists can play in developing a more powerful biomedical information infrastructure.
    Footnote
    Simultaneously published as Knitting the Semantic Web
    Theme
    Semantic Web
  18. Fensel, D.; Harmelen, F. van; Horrocks, I.: OIL and DAML+OIL : ontology languages for the Semantic Web (2004) 0.06
    0.061088912 = product of:
      0.091633365 = sum of:
        0.055053383 = weight(_text_:wide in 3244) [ClassicSimilarity], result of:
          0.055053383 = score(doc=3244,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 3244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3244)
        0.03657998 = product of:
          0.07315996 = sum of:
            0.07315996 = weight(_text_:web in 3244) [ClassicSimilarity], result of:
              0.07315996 = score(doc=3244,freq=12.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.4416067 = fieldWeight in 3244, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3244)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This chapter discusses OIL and DAML1OIL, currently the most prominent ontology languages for the Semantic Web. The chapter starts by discussing the pyramid of languages that underlie the architecture of the Semantic Web (XML, RDF, RDFS). In section 2.2, we briefly describe XML, RDF and RDFS. We then discuss in more detail OIL and DAML1OIL, the first proposals for languages at the ontology layer of the semantic pyramid. For OIL (and to some extent DAML1OIL) we discuss the general design motivations (Section 2.3), describe the constructions in the language (Section 2.4), and the various syntactic forms of these languages (Section 2.5). Section 2.6 discusses the layered architecture of the language, section 2.7 briefly mentions the formal semantics, section 2.8 discusses the transition from OIL to DAML+OIL, and section 2.9 concludes with our experience with the language to date and future development in the context of the World Wide Web Consortium (W3C). This chapter is not intended to give full and formal definitions of either the syntax or the semantics of OIL or DAML1OIL. Such definitions are already available elsewhere: http://www.ontoknowledge.org/oil/ for OIL and http://www.w3.org/submission/2001/12/ for DAML1OIL.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  19. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.06
    0.059333354 = product of:
      0.08900003 = sum of:
        0.062285792 = weight(_text_:wide in 230) [ClassicSimilarity], result of:
          0.062285792 = score(doc=230,freq=4.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.2769224 = fieldWeight in 230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
        0.026714243 = product of:
          0.053428486 = sum of:
            0.053428486 = weight(_text_:web in 230) [ClassicSimilarity], result of:
              0.053428486 = score(doc=230,freq=10.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.32250395 = fieldWeight in 230, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
    Source
    Web semantics: science, services and agents on the World Wide Web. 9(2011) no.4, S.434-452
    Theme
    Semantic Web
  20. McGuinness, D.L.: Ontologies come of age (2003) 0.06
    0.058964126 = product of:
      0.088446185 = sum of:
        0.055053383 = weight(_text_:wide in 3084) [ClassicSimilarity], result of:
          0.055053383 = score(doc=3084,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 3084, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3084)
        0.033392806 = product of:
          0.06678561 = sum of:
            0.06678561 = weight(_text_:web in 3084) [ClassicSimilarity], result of:
              0.06678561 = score(doc=3084,freq=10.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.40312994 = fieldWeight in 3084, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3084)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
    Source
    Spinning the Semantic Web: bringing the World Wide Web to its full potential. Eds.: D. Fensel u.a
    Theme
    Semantic Web

Years

Types

  • el 23
  • x 1
  • More… Less…