Search (16 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.01
    0.008063241 = product of:
      0.0403162 = sum of:
        0.0403162 = product of:
          0.0806324 = sum of:
            0.0806324 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.0806324 = score(doc=4643,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 9.2007 15:41:14
  2. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.0069113495 = product of:
      0.034556746 = sum of:
        0.034556746 = product of:
          0.06911349 = sum of:
            0.06911349 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.06911349 = score(doc=6048,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 9.2007 15:41:14
  3. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.0069113495 = product of:
      0.034556746 = sum of:
        0.034556746 = product of:
          0.06911349 = sum of:
            0.06911349 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.06911349 = score(doc=100,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 9.2007 15:41:14
  4. OWL Web Ontology Language Test Cases (2004) 0.00
    0.004607566 = product of:
      0.02303783 = sum of:
        0.02303783 = product of:
          0.04607566 = sum of:
            0.04607566 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.04607566 = score(doc=4685,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    14. 8.2011 13:33:22
  5. OWL Web Ontology Language Use Cases and Requirements (2004) 0.00
    0.0042687347 = product of:
      0.021343673 = sum of:
        0.021343673 = product of:
          0.042687345 = sum of:
            0.042687345 = weight(_text_:management in 4686) [ClassicSimilarity], result of:
              0.042687345 = score(doc=4686,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.29792285 = fieldWeight in 4686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4686)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This document specifies usage scenarios, goals and requirements for a web ontology language. An ontology formally defines a common set of terms that are used to describe and represent a domain. Ontologies can be used by automated tools to power advanced services such as more accurate web search, intelligent software agents and knowledge management.
  6. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.00
    0.0040316205 = product of:
      0.0201581 = sum of:
        0.0201581 = product of:
          0.0403162 = sum of:
            0.0403162 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.0403162 = score(doc=4330,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    12. 2.2011 17:35:22
  7. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.00
    0.0040316205 = product of:
      0.0201581 = sum of:
        0.0201581 = product of:
          0.0403162 = sum of:
            0.0403162 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.0403162 = score(doc=759,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    11. 5.2013 19:22:18
  8. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.0034556747 = product of:
      0.017278373 = sum of:
        0.017278373 = product of:
          0.034556746 = sum of:
            0.034556746 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.034556746 = score(doc=4649,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    26.12.2011 13:40:22
  9. Vatant, B.: Porting library vocabularies to the Semantic Web, and back : a win-win round trip (2010) 0.00
    0.003201551 = product of:
      0.016007755 = sum of:
        0.016007755 = product of:
          0.03201551 = sum of:
            0.03201551 = weight(_text_:management in 3968) [ClassicSimilarity], result of:
              0.03201551 = score(doc=3968,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.22344214 = fieldWeight in 3968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3968)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  10. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    0.003201551 = product of:
      0.016007755 = sum of:
        0.016007755 = product of:
          0.03201551 = sum of:
            0.03201551 = weight(_text_:management in 4316) [ClassicSimilarity], result of:
              0.03201551 = score(doc=4316,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.22344214 = fieldWeight in 4316, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4316)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RDF annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  11. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    0.003201551 = product of:
      0.016007755 = sum of:
        0.016007755 = product of:
          0.03201551 = sum of:
            0.03201551 = weight(_text_:management in 4704) [ClassicSimilarity], result of:
              0.03201551 = score(doc=4704,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.22344214 = fieldWeight in 4704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    CIKM '04 Proceedings of the thirteenth ACM international conference on Information and knowledge management
  12. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    0.002879729 = product of:
      0.014398645 = sum of:
        0.014398645 = product of:
          0.02879729 = sum of:
            0.02879729 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.02879729 = score(doc=4553,freq=2.0), product of:
                0.14886121 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042509552 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    16.11.2018 14:22:01
  13. Davies, J.; Weeks, R.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    0.002667959 = product of:
      0.013339795 = sum of:
        0.013339795 = product of:
          0.02667959 = sum of:
            0.02667959 = weight(_text_:management in 4320) [ClassicSimilarity], result of:
              0.02667959 = score(doc=4320,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.18620178 = fieldWeight in 4320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4320)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RD annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  14. Auer, S.; Lehmann, J.: Making the Web a data washing machine : creating knowledge out of interlinked data (2010) 0.00
    0.002667959 = product of:
      0.013339795 = sum of:
        0.013339795 = product of:
          0.02667959 = sum of:
            0.02667959 = weight(_text_:management in 112) [ClassicSimilarity], result of:
              0.02667959 = score(doc=112,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.18620178 = fieldWeight in 112, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=112)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Over the past 3 years, the semantic web activity has gained momentum with the widespread publishing of structured data as RDF. The Linked Data paradigm has therefore evolved from a practical research idea into a very promising candidate for addressing one of the biggest challenges in the area of the Semantic Web vision: the exploitation of the Web as a platform for data and information integration. To translate this initial success into a world-scale reality, a number of research challenges need to be addressed: the performance gap between relational and RDF data management has to be closed, coherence and quality of data published on theWeb have to be improved, provenance and trust on the Linked Data Web must be established and generally the entrance barrier for data publishers and users has to be lowered. In this vision statement we discuss these challenges and argue, that research approaches tackling these challenges should be integrated into a mutual refinement cycle. We also present two crucial use-cases for the widespread adoption of linked data.
  15. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    0.002667959 = product of:
      0.013339795 = sum of:
        0.013339795 = product of:
          0.02667959 = sum of:
            0.02667959 = weight(_text_:management in 3297) [ClassicSimilarity], result of:
              0.02667959 = score(doc=3297,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.18620178 = fieldWeight in 3297, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
  16. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.00
    0.0018675713 = product of:
      0.009337856 = sum of:
        0.009337856 = product of:
          0.018675713 = sum of:
            0.018675713 = weight(_text_:management in 1210) [ClassicSimilarity], result of:
              0.018675713 = score(doc=1210,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.13034125 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The Semantic Web activity is a W3C project whose goal is to enable a 'cooperative' Web where machines and humans can exchange electronic content that has clear-cut, unambiguous meaning. This vision is based on the automated sharing of metadata terms across Web applications. The declaration of schemas in metadata registries advance this vision by providing a common approach for the discovery, understanding, and exchange of semantics. However, many of the issues regarding registries are not clear, and ideas vary regarding their scope and purpose. Additionally, registry issues are often difficult to describe and comprehend without a working example. This article will explore the role of metadata registries and will describe three prototypes, written by the Dublin Core Metadata Initiative. The article will outline how the prototypes are being used to demonstrate and evaluate application scope, functional requirements, and technology solutions for metadata registries. Metadata schema registries are, in effect, databases of schemas that can trace an historical line back to shared data dictionaries and the registration process encouraged by the ISO/IEC 11179 community. New impetus for the development of registries has come with the development activities surrounding creation of the Semantic Web. The motivation for establishing registries arises from domain and standardization communities, and from the knowledge management community. Examples of current registry activity include: