Search (31 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × type_ss:"m"
  • × year_i:[2010 TO 2020}
  1. Semantic applications (2018) 0.01
    0.0053624217 = product of:
      0.021449687 = sum of:
        0.021449687 = weight(_text_:information in 5204) [ClassicSimilarity], result of:
          0.021449687 = score(doc=5204,freq=26.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.34965688 = fieldWeight in 5204, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
      0.25 = coord(1/4)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Information storage and retrieval
    Management information systems
    Information Systems Applications (incl. Internet)
    Management of Computing and Information Systems
    Information Storage and Retrieval
    RSWK
    Information Retrieval
    Subject
    Information Retrieval
    Information storage and retrieval
    Management information systems
    Information Systems Applications (incl. Internet)
    Management of Computing and Information Systems
    Information Storage and Retrieval
  2. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.00
    0.0039907596 = product of:
      0.015963038 = sum of:
        0.015963038 = weight(_text_:information in 3274) [ClassicSimilarity], result of:
          0.015963038 = score(doc=3274,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2602176 = fieldWeight in 3274, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
      0.25 = coord(1/4)
    
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.
    LCSH
    Information storage and retrieval systems
    Series
    Communications in computer and information science; 544
    Subject
    Information storage and retrieval systems
  3. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.00
    0.003606434 = product of:
      0.014425736 = sum of:
        0.014425736 = weight(_text_:information in 3283) [ClassicSimilarity], result of:
          0.014425736 = score(doc=3283,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23515764 = fieldWeight in 3283, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
    Series
    Communications in computer and information science; 672
  4. Willer, M.; Dunsire, G.: Bibliographic information organization in the Semantic Web (2013) 0.00
    0.0033256328 = product of:
      0.013302531 = sum of:
        0.013302531 = weight(_text_:information in 2143) [ClassicSimilarity], result of:
          0.013302531 = score(doc=2143,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21684799 = fieldWeight in 2143, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2143)
      0.25 = coord(1/4)
    
    Abstract
    New technologies will underpin the future generation of library catalogues. To facilitate their role providing information, serving users, and fulfilling their mission as cultural heritage and memory institutions, libraries must take a technological leap; their standards and services must be transformed to those of the Semantic Web. Bibliographic Information Organization in the Semantic Web explores the technologies that may power future library catalogues, and argues the necessity of such a leap. The text introduces international bibliographic standards and models, and fundamental concepts in their representation in the context of the Semantic Web. Subsequent chapters cover bibliographic information organization, linked open data, methodologies for publishing library metadata, discussion of the wider environment (museum, archival and publishing communities) and users, followed by a conclusion.
    Series
    Chandos information professional series
  5. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.00
    0.0033256328 = product of:
      0.013302531 = sum of:
        0.013302531 = weight(_text_:information in 2192) [ClassicSimilarity], result of:
          0.013302531 = score(doc=2192,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21684799 = fieldWeight in 2192, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
    LCSH
    Information storage and retrieval systems
    Series
    Communications in computer and information science; 478
    Subject
    Information storage and retrieval systems
  6. Metadata and semantics research : 5th International Conference, MTSR 2011, Izmir, Turkey, October 12-14, 2011. Proceedings (2011) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 1152) [ClassicSimilarity], result of:
          0.012364916 = score(doc=1152,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 1152, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1152)
      0.25 = coord(1/4)
    
    LCSH
    Information storage and retrieval systems
    Series
    Communications in computer and information science; vol.240
    Subject
    Information storage and retrieval systems
  7. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 3197) [ClassicSimilarity], result of:
          0.012364916 = score(doc=3197,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 3197, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
      0.25 = coord(1/4)
    
    Abstract
    Indexing consists of both novel and more traditional techniques. Cutting-edge indexing techniques, such as automatic indexing, ontologies, and topic maps, were developed independently of older techniques such as thesauri, but it is now recognized that these older methods also hold expertise. Indexing describes various traditional and novel indexing techniques, giving information professionals and students of library and information sciences a broad and comprehensible introduction to indexing. This title consists of twelve chapters: an Introduction to subject readings and theasauri; Automatic indexing versus manual indexing; Techniques applied in automatic indexing of text material; Automatic indexing of images; The black art of indexing moving images; Automatic indexing of music; Taxonomies and ontologies; Metadata formats and indexing; Tagging; Topic maps; Indexing the web; and The Semantic Web.
    Series
    Chandos information professional series
  8. Bergamaschi, S.; Domnori, E.; Guerra, F.; Rota, S.; Lado, R.T.; Velegrakis, Y.: Understanding the semantics of keyword queries on relational data without accessing the instance (2012) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 431) [ClassicSimilarity], result of:
          0.011898145 = score(doc=431,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 431, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=431)
      0.25 = coord(1/4)
    
    Abstract
    The birth of the Web has brought an exponential growth to the amount of the information that is freely available to the Internet population, overloading users and entangling their efforts to satisfy their information needs. Web search engines such Google, Yahoo, or Bing have become popular mainly due to the fact that they offer an easy-to-use query interface (i.e., based on keywords) and an effective and efficient query execution mechanism. The majority of these search engines do not consider information stored on the deep or hidden Web [9,28], despite the fact that the size of the deep Web is estimated to be much bigger than the surface Web [9,47]. There have been a number of systems that record interactions with the deep Web sources or automatically submit queries them (mainly through their Web form interfaces) in order to index their context. Unfortunately, this technique is only partially indexing the data instance. Moreover, it is not possible to take advantage of the query capabilities of data sources, for example, of the relational query features, because their interface is often restricted from the Web form. Besides, Web search engines focus on retrieving documents and not on querying structured sources, so they are unable to access information based on concepts.
  9. Blanco, L.; Bronzi, M.; Crescenzi, V.; Merialdo, P.; Papotti, P.: Flint: from Web pages to probabilistic semantic data (2012) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 437) [ClassicSimilarity], result of:
          0.011898145 = score(doc=437,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 437, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=437)
      0.25 = coord(1/4)
    
    Abstract
    The Web is a surprisingly extensive source of information: it offers a huge number of sites containing data about a disparate range of topics. Although Web pages are built for human fruition, not for automatic processing of the data, we observe that an increasing number of Web sites deliver pages containing structured information about recognizable concepts, relevant to specific application domains, such as movies, finance, sport, products, etc. The development of scalable techniques to discover, extract, and integrate data from fairly structured large corpora available on the Web is a challenging issue, because to face the Web scale, these activities should be accomplished automatically by domain-independent techniques. To cope with the complexity and the heterogeneity of Web data, state-of-the-art approaches focus on information organized according to specific patterns that frequently occur on the Web. Meaningful examples are WebTables, which focuses on data published in HTML tables, and information extraction systems, such as TextRunner, which exploits lexical-syntactic patterns. As noticed by Cafarella et al., even if a small fraction of the Web is organized according to these patterns, due to the Web scale, the amount of data involved is impressive. In this chapter, we focus on methods and techniques to wring out value from the data delivered by large data-intensive Web sites.
  10. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 2801) [ClassicSimilarity], result of:
          0.011898145 = score(doc=2801,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
      0.25 = coord(1/4)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
    Footnote
    Rez. in: Annals of Library and Information Studies 62(2015) no.4, S.299-300 (A.K. Das)
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  11. Brambilla, M.; Ceri, S.: Designing exploratory search applications upon Web data sources (2012) 0.00
    0.0029144385 = product of:
      0.011657754 = sum of:
        0.011657754 = weight(_text_:information in 428) [ClassicSimilarity], result of:
          0.011657754 = score(doc=428,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19003606 = fieldWeight in 428, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=428)
      0.25 = coord(1/4)
    
    Abstract
    Search is the preferred method to access information in today's computing systems. The Web, accessed through search engines, is universally recognized as the source for answering users' information needs. However, offering a link to a Web page does not cover all information needs. Even simple problems, such as "Which theater offers an at least three-stars action movie in London close to a good Italian restaurant," can only be solved by searching the Web multiple times, e.g., by extracting a list of the recent action movies filtered by ranking, then looking for movie theaters, then looking for Italian restaurants close to them. While search engines hint to useful information, the user's brain is the fundamental platform for information integration. An important trend is the availability of new, specialized data sources-the so-called "long tail" of the Web of data. Such carefully collected and curated data sources can be much more valuable than information currently available in Web pages; however, many sources remain hidden or insulated, in the lack of software solutions for bringing them to surface and making them usable in the search context. A new class of tailor-made systems, designed to satisfy the needs of users with specific aims, will support the publishing and integration of data sources for vertical domains; the user will be able to select sources based on individual or collective trust, and systems will be able to route queries to such sources and to provide easyto-use interfaces for combining them within search strategies, at the same time, rewarding the data source owners for each contribution to effective search. Efforts such as Google's Fusion Tables show that the technology for bringing hidden data sources to surface is feasible.
  12. Virgilio, R. De; Cappellari, P.; Maccioni, A.; Torlone, R.: Path-oriented keyword search query over RDF (2012) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 429) [ClassicSimilarity], result of:
          0.010304097 = score(doc=429,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 429, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=429)
      0.25 = coord(1/4)
    
    Abstract
    We are witnessing a smooth evolution of the Web from a worldwide information space of linked documents to a global knowledge base, where resources are identified by means of uniform resource identifiers (URIs, essentially string identifiers) and are semantically described and correlated through resource description framework (RDF, a metadata data model) statements. With the size and availability of data constantly increasing (currently around 7 billion RDF triples and 150 million RDF links), a fundamental problem lies in the difficulty users face to find and retrieve the information they are interested in. In general, to access semantic data, users need to know the organization of data and the syntax of a specific query language (e.g., SPARQL or variants thereof). Clearly, this represents an obstacle to information access for nonexpert users. For this reason, keyword search-based systems are increasingly capturing the attention of researchers. Recently, many approaches to keyword-based search over structured and semistructured data have been proposed]. These approaches usually implement IR strategies on top of traditional database management systems with the goal of freeing the users from having to know data organization and query languages.
  13. Ioannou, E.; Nejdl, W.; Niederée, C.; Velegrakis, Y.: Embracing uncertainty in entity linking (2012) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 433) [ClassicSimilarity], result of:
          0.010304097 = score(doc=433,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 433, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=433)
      0.25 = coord(1/4)
    
    Abstract
    The modern Web has grown from a publishing place of well-structured data and HTML pages for companies and experienced users into a vivid publishing and data exchange community in which everyone can participate, both as a data consumer and as a data producer. Unavoidably, the data available on the Web became highly heterogeneous, ranging from highly structured and semistructured to highly unstructured user-generated content, reflecting different perspectives and structuring principles. The full potential of such data can only be realized by combining information from multiple sources. For instance, the knowledge that is typically embedded in monolithic applications can be outsourced and, thus, used also in other applications. Numerous systems nowadays are already actively utilizing existing content from various sources such as WordNet or Wikipedia. Some well-known examples of such systems include DBpedia, Freebase, Spock, and DBLife. A major challenge during combining and querying information from multiple heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces of information correspond to the same real-world object. This chapter introduces a novel approach for addressing the entity linkage problem for heterogeneous, uncertain, and volatile data.
  14. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 3934) [ClassicSimilarity], result of:
          0.010304097 = score(doc=3934,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 3934, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.25 = coord(1/4)
    
    LCSH
    Information storage and retrieval
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
    Subject
    Information storage and retrieval
  15. Gartner, R.: Metadata : shaping knowledge from antiquity to the semantic web (2016) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 731) [ClassicSimilarity], result of:
          0.010304097 = score(doc=731,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 731, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=731)
      0.25 = coord(1/4)
    
    Abstract
    This book offers a comprehensive guide to the world of metadata, from its origins in the ancient cities of the Middle East, to the Semantic Web of today. The author takes us on a journey through the centuries-old history of metadata up to the modern world of crowdsourcing and Google, showing how metadata works and what it is made of. The author explores how it has been used ideologically and how it can never be objective. He argues how central it is to human cultures and the way they develop. Metadata: Shaping Knowledge from Antiquity to the Semantic Web is for all readers with an interest in how we humans organize our knowledge and why this is important. It is suitable for those new to the subject as well as those know its basics. It also makes an excellent introduction for students of information science and librarianship.
    LCSH
    Information storage and retrieval
    Subject
    Information storage and retrieval
  16. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.00
    0.002327943 = product of:
      0.009311772 = sum of:
        0.009311772 = weight(_text_:information in 1155) [ClassicSimilarity], result of:
          0.009311772 = score(doc=1155,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1517936 = fieldWeight in 1155, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1155)
      0.25 = coord(1/4)
    
    Abstract
    Metadata and semantics are integral to any information system and significant to the sphere of Web data. Research focusing on metadata and semantics is crucial for advancing our understanding and knowledge of metadata; and, more profoundly for being able to effectively discover, use, archive, and repurpose information. In response to this need, researchers are actively examining methods for generating, reusing, and interchanging metadata. Integrated with these developments is research on the application of computational methods, linked data, and data analytics. A growing body of work also targets conceptual and theoretical designs providing foundational frameworks for metadata and semantic applications. There is no doubt that metadata weaves its way into nearly every aspect of our information ecosystem, and there is great motivation for advancing the current state of metadata and semantics. To this end, it is vital that scholars and practitioners convene and share their work.
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    Series
    Communications in computer and information science; vol.390
  17. Harth, A.; Hogan, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing linked data with SWSE* (2012) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 410) [ClassicSimilarity], result of:
          0.008413259 = score(doc=410,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 410, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=410)
      0.25 = coord(1/4)
    
    Abstract
    Web search engines such as Google, Yahoo! MSN/Bing, and Ask are far from the consummate Web search solution: they do not typically produce direct answers to queries but instead typically recommend a selection of related documents from the Web. We note that in more recent years, search engines have begun to provide direct answers to prose queries matching certain common templates-for example, "population of china" or "12 euro in dollars"-but again, such functionality is limited to a small subset of popular user queries. Furthermore, search engines now provide individual and focused search interfaces over images, videos, locations, news articles, books, research papers, blogs, and real-time social media-although these tools are inarguably powerful, they are limited to their respective domains. In the general case, search engines are not suitable for complex information gathering tasks requiring aggregation from multiple indexed documents: for such tasks, users must manually aggregate tidbits of pertinent information from various pages. In effect, such limitations are predicated on the lack of machine-interpretable structure in HTML-documents, which is often limited to generic markup tags mainly concerned with document renderign and linking. Most of the real content is contained in prose text which is inherently difficult for machines to interpret.
  18. Zenz, G.; Zhou, X.; Minack, E.; Siberski, W.; Nejdl, W.: Interactive query construction for keyword search on the Semantic Web (2012) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 430) [ClassicSimilarity], result of:
          0.008413259 = score(doc=430,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 430, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
      0.25 = coord(1/4)
    
    Abstract
    With the advance of the semantic Web, increasing amounts of data are available in a structured and machine-understandable form. This opens opportunities for users to employ semantic queries instead of simple keyword-based ones to accurately express the information need. However, constructing semantic queries is a demanding task for human users [11]. To compose a valid semantic query, a user has to (1) master a query language (e.g., SPARQL) and (2) acquire sufficient knowledge about the ontology or the schema of the data source. While there are systems which support this task with visual tools [21, 26] or natural language interfaces [3, 13, 14, 18], the process of query construction can still be complex and time consuming. According to [24], users prefer keyword search, and struggle with the construction of semantic queries although being supported with a natural language interface. Several keyword search approaches have already been proposed to ease information seeking on semantic data [16, 32, 35] or databases [1, 31]. However, keyword queries lack the expressivity to precisely describe the user's intent. As a result, ranking can at best put query intentions of the majority on top, making it impossible to take the intentions of all users into consideration.
  19. ¬The Semantic Web: latest advances and new domains : 12th European Semantic Web Conference, ESWC 2015 Portoroz, Slovenia, May 31 -- June 4, 2015. Proceedings (2015) 0.00
    0.0020608194 = product of:
      0.008243278 = sum of:
        0.008243278 = weight(_text_:information in 2028) [ClassicSimilarity], result of:
          0.008243278 = score(doc=2028,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1343758 = fieldWeight in 2028, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2028)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 12th Extended Semantic Web Conference, ESWC 2014, held in Anissaras, Portoroz, Slovenia, in May/June 2015. The 43 revised full papers presented together with three invited talks were carefully reviewed and selected from 164 submissions. This program was completed by a demonstration and poster session, in which researchers had the chance to present their latest results and advances in the form of live demos. In addition, the PhD Symposium program included 12 contributions, selected out of 16 submissions. The core tracks of the research conference were complemented with new tracks focusing on linking machine and human computation at web scale (cognition and Semantic Web, Human Computation and Crowdsourcing) beside the following subjects Vocabularies, Schemas, Ontologies, Reasoning, Linked Data, Semantic Web and Web Science, Semantic Data Management, Big data, Scalability, Natural Language Processing and Information Retrieval, Machine Learning, Mobile Web, Internet of Things and Semantic Streams, Services, Web APIs and the Web of Things, Cognition and Semantic Web, Human Computation and Crowdsourcing and In-Use Industrial Track as well
    Content
    Inhalt (Auszug) Vocabularies, Schemas, Ontologies: Requirements for and Evaluation of User Support for Large-Scale Ontology Alignment / Valentina Ivanova, Patrick Lambrix, and Johan Åberg -- RODI: A Benchmark for Automatic Mapping Generation in Relational-to-Ontology Data Integration / Christoph Pinkel, Carsten Binnig, Ernesto Jiménez-Ruiz, Wolfgang May, Dominique Ritze, Martin G. Skjæveland, Alessandro Solimando, and Evgeny Kharlamov -- VocBench: A Web Application for Collaborative Development of Multilingual Thesauri. / Armando Stellato, Sachit Rajbhandari, Andrea Turbati, Manuel Fiorelli, Caterina Caracciolo, Tiziano Lorenzetti, Johannes Keizer, and Maria Teresa Pazienza -- Leveraging and Balancing Heterogeneous Sources of Evidence in Ontology Learning / Gerhard Wohlgenannt Natural Language Processing and Information Retrieval Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text / Achim Rettinger, Artem Schumilin, Steffen Thoma, and Basil Ell
    Series
    Information Systems and Applications, incl. Internet/Web, and HCI; Bd. 9088
  20. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.001803217 = product of:
      0.007212868 = sum of:
        0.007212868 = weight(_text_:information in 4515) [ClassicSimilarity], result of:
          0.007212868 = score(doc=4515,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.11757882 = fieldWeight in 4515, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.25 = coord(1/4)
    
    LCSH
    Knowledge representation (Information theory)
    Series
    Knowledge and information; vol.3
    Subject
    Knowledge representation (Information theory)

Subjects