Search (89 results, page 1 of 5)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × year_i:[2000 TO 2010}
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.10
    0.10213031 = product of:
      0.20426062 = sum of:
        0.046572387 = product of:
          0.13971716 = sum of:
            0.13971716 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.13971716 = score(doc=701,freq=2.0), product of:
                0.37289858 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.043984205 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.017971063 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.017971063 = score(doc=701,freq=18.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.13971716 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.13971716 = score(doc=701,freq=2.0), product of:
            0.37289858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.043984205 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(3/6)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.05
    0.04832034 = product of:
      0.09664068 = sum of:
        0.0059903543 = weight(_text_:information in 3883) [ClassicSimilarity], result of:
          0.0059903543 = score(doc=3883,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.0775819 = fieldWeight in 3883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
        0.061179362 = weight(_text_:united in 3883) [ClassicSimilarity], result of:
          0.061179362 = score(doc=3883,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.2479343 = fieldWeight in 3883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
        0.029470965 = product of:
          0.05894193 = sum of:
            0.05894193 = weight(_text_:states in 3883) [ClassicSimilarity], result of:
              0.05894193 = score(doc=3883,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.24335839 = fieldWeight in 3883, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Source
    New review of information networking. 7(2001) no.xx, S.xx-xx
  3. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.04
    0.037448075 = product of:
      0.11234422 = sum of:
        0.02009226 = weight(_text_:information in 439) [ClassicSimilarity], result of:
          0.02009226 = score(doc=439,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.2602176 = fieldWeight in 439, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.09225196 = weight(_text_:networks in 439) [ClassicSimilarity], result of:
          0.09225196 = score(doc=439,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.44343 = fieldWeight in 439, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
      0.33333334 = coord(2/6)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Computer Communication Networks
    Information storage and retrieval systems
    Information systems
    Subject
    Computer Communication Networks
    Information storage and retrieval systems
    Information systems
  4. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.03
    0.031570602 = product of:
      0.063141204 = sum of:
        0.0064847493 = weight(_text_:information in 468) [ClassicSimilarity], result of:
          0.0064847493 = score(doc=468,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.083984874 = fieldWeight in 468, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
        0.0382371 = weight(_text_:united in 468) [ClassicSimilarity], result of:
          0.0382371 = score(doc=468,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.15495893 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
        0.018419355 = product of:
          0.03683871 = sum of:
            0.03683871 = weight(_text_:states in 468) [ClassicSimilarity], result of:
              0.03683871 = score(doc=468,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.152099 = fieldWeight in 468, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Footnote
    Rez. in: JASIST 57(2006) no.8, S.1132-1133 (H. Che): "The World Wide Web has been the main source of an important shift in the way people communicate with each other, get information, and conduct business. However, most of the current Web content is only suitable for human consumption. The main obstacle to providing better quality of service is that the meaning of Web content is not machine-accessible. The "Semantic Web" is envisioned by Tim Berners-Lee as a logical extension to the current Web that enables explicit representations of term meaning. It aims to bring the Web to its full potential via the exploration of these machine-processable metadata. To fulfill this, it pros ides some meta languages like RDF, OWL, DAML+OIL, and SHOE for expressing knowledge that has clear, unambiguous meanings. The first steps in searing the Semantic Web into the current Web are successfully underway. In the forthcoming years, these efforts still remain highly focused in the research and development community. In the next phase, the Semantic Web will respond more intelligently to user queries. The first chapter gets started with an excellent introduction to the Semantic Web vision. At first, today's Web is introduced, and problems with some current applications like search engines are also covered. Subsequently, knowledge management. business-to-consumer electronic commerce, business-to-business electronic commerce, and personal agents are used as examples to show the potential requirements for the Semantic Web. Next comes the brief description of the underpinning technologies, including metadata, ontology, logic, and agent. The differences between the Semantic Web and Artificial Intelligence are also discussed in a later subsection. In section 1.4, the famous "laser-cake" diagram is given to show a layered view of the Semantic Web. From chapter 2, the book starts addressing some of the most important technologies for constructing the Semantic Web. In chapter 2, the authors discuss XML and its related technologies such as namespaces, XPath, and XSLT. XML is a simple, very flexible text format which is often used for the exchange of a wide variety of data on the Web and elsewhere. The W3C has defined various languages on top of XML, such as RDF. Although this chapter is very well planned and written, many details are not included because of the extensiveness of the XML technologies. Many other books on XML provide more comprehensive coverage.
    The next chapter introduces resource description framework (RDF) and RDF schema (RDFS). Unlike XML, RDF provides a foundation for expressing the semantics of dada: it is a standard dada model for machine-processable semantics. Resource description framework schema offers a number of modeling primitives for organizing RDF vocabularies in typed hierarchies. In addition to RDF and RDFS, a query language for RDF, i.e. RQL. is introduced. This chapter and the next chapter are two of the most important chapters in the book. Chapter 4 presents another language called Web Ontology Language (OWL). Because RDFS is quite primitive as a modeling language for the Web, more powerful languages are needed. A richer language. DAML+OIL, is thus proposed as a joint endeavor of the United States and Europe. OWL takes DAML+OIL as the starting point, and aims to be the standardized and broadly accepted ontology language. At the beginning of the chapter, the nontrivial relation with RDF/RDFS is discussed. Then the authors describe the various language elements of OWL in some detail. Moreover, Appendix A contains an abstract OWL syntax. which compresses OWL and makes OWL much easier to read. Chapter 5 covers both monotonic and nonmonotonic rules. Whereas the previous chapter's mainly concentrate on specializations of knowledge representation, this chapter depicts the foundation of knowledge representation and inference. Two examples are also givwn to explain monotonic and non-monotonic rules, respectively. "To get the most out of the chapter. readers had better gain a thorough understanding of predicate logic first. Chapter 6 presents several realistic application scenarios to which the Semantic Web technology can be applied. including horizontal information products at Elsevier, data integration at Audi, skill finding at Swiss Life, a think tank portal at EnerSearch, e-learning. Web services, multimedia collection indexing, online procurement, raid device interoperability. These case studies give us some real feelings about the Semantic Web.
    Series
    Cooperative information systems
  5. Aberer, K. et al.: ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings (2007) 0.03
    0.02539154 = product of:
      0.07617462 = sum of:
        0.014673311 = weight(_text_:information in 2477) [ClassicSimilarity], result of:
          0.014673311 = score(doc=2477,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19003606 = fieldWeight in 2477, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2477)
        0.0615013 = weight(_text_:networks in 2477) [ClassicSimilarity], result of:
          0.0615013 = score(doc=2477,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.29562 = fieldWeight in 2477, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.03125 = fieldNorm(doc=2477)
      0.33333334 = coord(2/6)
    
    LCSH
    Computer Communication Networks
    Information systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    Subject
    Computer Communication Networks
    Information systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
  6. Mayr, P.; Mutschke, P.; Petras, V.: Reducing semantic complexity in distributed digital libraries : Treatment of term vagueness and document re-ranking (2008) 0.02
    0.02244316 = product of:
      0.06732948 = sum of:
        0.0129694985 = weight(_text_:information in 1909) [ClassicSimilarity], result of:
          0.0129694985 = score(doc=1909,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16796975 = fieldWeight in 1909, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1909)
        0.054359984 = weight(_text_:networks in 1909) [ClassicSimilarity], result of:
          0.054359984 = score(doc=1909,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 1909, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1909)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The general science portal "vascoda" merges structured, high-quality information collections from more than 40 providers on the basis of search engine technology (FAST) and a concept which treats semantic heterogeneity between different controlled vocabularies. First experiences with the portal show some weaknesses of this approach which come out in most metadata-driven Digital Libraries (DLs) or subject specific portals. The purpose of the paper is to propose models to reduce the semantic complexity in heterogeneous DLs. The aim is to introduce value-added services (treatment of term vagueness and document re-ranking) that gain a certain quality in DLs if they are combined with heterogeneity components established in the project "Competence Center Modeling and Treatment of Semantic Heterogeneity". Design/methodology/approach - Two methods, which are derived from scientometrics and network analysis, will be implemented with the objective to re-rank result sets by the following structural properties: the ranking of the results by core journals (so-called Bradfordizing) and ranking by centrality of authors in co-authorship networks. Findings - The methods, which will be implemented, focus on the query and on the result side of a search and are designed to positively influence each other. Conceptually, they will improve the search quality and guarantee that the most relevant documents in result sets will be ranked higher. Originality/value - The central impact of the paper focuses on the integration of three structural value-adding methods, which aim at reducing the semantic complexity represented in distributed DLs at several stages in the information retrieval process: query construction, search and ranking and re-ranking.
    Theme
    Information Gateway
  7. Knitting the semantic Web (2007) 0.02
    0.022123698 = product of:
      0.06637109 = sum of:
        0.012839148 = weight(_text_:information in 1397) [ClassicSimilarity], result of:
          0.012839148 = score(doc=1397,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16628155 = fieldWeight in 1397, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1397)
        0.05353194 = weight(_text_:united in 1397) [ClassicSimilarity], result of:
          0.05353194 = score(doc=1397,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.2169425 = fieldWeight in 1397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1397)
      0.33333334 = coord(2/6)
    
    Abstract
    The Semantic Web, the extension that goes beyond the current Web, better enables computers and people to effectively work together by giving information well-defined meaning. Knitting the Semantic Web explains the interdisciplinary efforts underway to build a more library-like Web through "semantic knitting." The book examines tagging information with standardized semantic metadata to result in a network able to support computational activities and provide people with services efficiently. Leaders in library and information science, computer science, and information intensive domains provide insight and inspiration to give readers a greater understanding in the development, growth, and maintenance of the Semantic Web. Librarians are uniquely qualified to play a major role in the development and maintenance of the Semantic Web. Knitting the Semantic Web closely examines this crucial relationship in detail. This single source reviews the foundations, standards, and tools of the Semantic Web, as well as discussions on projects and perspectives. Many chapters include figures to illustrate concepts and ideas, and the entire text is extensively referenced. Topics in Knitting the Semantic Web include: - RDF, its expressive power, and its ability to underlie the new Library catalog card for the coming century - the value and application for controlled vocabularies - SKOS (Simple Knowledge Organization System), the newest Semantic Web language - managing scheme versioning in the Semantic Web - Physnet portal service for physics - Semantic Web technologies in biomedicine - developing the United Nations Food and Agriculture ontology - Friend Of A Friend (FOAF) vocabulary specification-with a real world case study at a university - and more Knitting the Semantic Web is a stimulating resource for professionals, researchers, educators, and students in library and information science, computer science, information architecture, Web design, and Web services.
  8. SKOS Simple Knowledge Organization System Primer (2009) 0.01
    0.010871997 = product of:
      0.06523198 = sum of:
        0.06523198 = weight(_text_:networks in 4795) [ClassicSimilarity], result of:
          0.06523198 = score(doc=4795,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.31355235 = fieldWeight in 4795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
      0.16666667 = coord(1/6)
    
    Abstract
    SKOS (Simple Knowledge Organisation System) provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, and other types of controlled vocabulary. As an application of the Resource Description Framework (RDF) SKOS allows concepts to be documented, linked and merged with other data, while still being composed, integrated and published on the World Wide Web. This document is an implementors guide for those who would like to represent their concept scheme using SKOS. In basic SKOS, conceptual resources (concepts) can be identified using URIs, labelled with strings in one or more natural languages, documented with various types of notes, semantically related to each other in informal hierarchies and association networks, and aggregated into distinct concept schemes. In advanced SKOS, conceptual resources can be mapped to conceptual resources in other schemes and grouped into labelled or ordered collections. Concept labels can also be related to each other. Finally, the SKOS vocabulary itself can be extended to suit the needs of particular communities of practice.
  9. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.010446835 = product of:
      0.031340506 = sum of:
        0.010483121 = weight(_text_:information in 759) [ClassicSimilarity], result of:
          0.010483121 = score(doc=759,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.020857384 = product of:
          0.04171477 = sum of:
            0.04171477 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04171477 = score(doc=759,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  10. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.01
    0.00895443 = product of:
      0.026863288 = sum of:
        0.0089855315 = weight(_text_:information in 2556) [ClassicSimilarity], result of:
          0.0089855315 = score(doc=2556,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.116372846 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.017877758 = product of:
          0.035755515 = sum of:
            0.035755515 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.035755515 = score(doc=2556,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    30.12.2008 18:22:46
    Source
    Online information review. 27(2003) no.2, S.94-101
  11. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.01
    0.0074313683 = product of:
      0.022294104 = sum of:
        0.010375599 = weight(_text_:information in 320) [ClassicSimilarity], result of:
          0.010375599 = score(doc=320,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1343758 = fieldWeight in 320, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=320)
        0.011918506 = product of:
          0.023837011 = sum of:
            0.023837011 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.023837011 = score(doc=320,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    "The Semantic Web is an extension of the current Web in which information is given well defined meaning, better enabling computers and people to work in cooperation." - Tim Berners Lee, "Scientific American", May 2001. This authoritative guide shows how the "Semantic Web" works technically and how businesses can utilize it to gain a competitive advantage. It explains what taxonomies and ontologies are as well as their importance in constructing the Semantic Web. The companion web site includes further updates as the framework develops and links to related sites.
    BK
    85.20 Betriebliche Information und Kommunikation
    Classification
    85.20 Betriebliche Information und Kommunikation
    Date
    22. 5.2007 10:37:38
  12. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.01
    0.0074313683 = product of:
      0.022294104 = sum of:
        0.010375599 = weight(_text_:information in 2656) [ClassicSimilarity], result of:
          0.010375599 = score(doc=2656,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1343758 = fieldWeight in 2656, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.011918506 = product of:
          0.023837011 = sum of:
            0.023837011 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
              0.023837011 = score(doc=2656,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.15476047 = fieldWeight in 2656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2656)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  13. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.01
    0.0073576607 = product of:
      0.022072982 = sum of:
        0.00917082 = weight(_text_:information in 150) [ClassicSimilarity], result of:
          0.00917082 = score(doc=150,freq=12.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.11877254 = fieldWeight in 150, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.012902162 = product of:
          0.025804324 = sum of:
            0.025804324 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.025804324 = score(doc=150,freq=6.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    LCSH
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Information storage and retrieval systems
  14. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.01
    0.006952462 = product of:
      0.04171477 = sum of:
        0.04171477 = product of:
          0.08342954 = sum of:
            0.08342954 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.08342954 = score(doc=4643,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 9.2007 15:41:14
  15. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.01
    0.0067967153 = product of:
      0.020390145 = sum of:
        0.008471641 = weight(_text_:information in 2661) [ClassicSimilarity], result of:
          0.008471641 = score(doc=2661,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.10971737 = fieldWeight in 2661, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.011918506 = product of:
          0.023837011 = sum of:
            0.023837011 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
              0.023837011 = score(doc=2661,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.15476047 = fieldWeight in 2661, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  16. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.005959253 = product of:
      0.035755515 = sum of:
        0.035755515 = product of:
          0.07151103 = sum of:
            0.07151103 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.07151103 = score(doc=6048,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 9.2007 15:41:14
  17. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.005959253 = product of:
      0.035755515 = sum of:
        0.035755515 = product of:
          0.07151103 = sum of:
            0.07151103 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.07151103 = score(doc=100,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 9.2007 15:41:14
  18. Shaw, R.; Buckland, M.: Open identification and linking of the four Ws (2008) 0.01
    0.005947126 = product of:
      0.017841378 = sum of:
        0.0074126855 = weight(_text_:information in 2665) [ClassicSimilarity], result of:
          0.0074126855 = score(doc=2665,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.0960027 = fieldWeight in 2665, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2665)
        0.010428692 = product of:
          0.020857384 = sum of:
            0.020857384 = weight(_text_:22 in 2665) [ClassicSimilarity], result of:
              0.020857384 = score(doc=2665,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.1354154 = fieldWeight in 2665, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2665)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Platforms for social computing connect users via shared references to people with whom they have relationships, events attended, places lived in or traveled to, and topics such as favorite books or movies. Since free text is insufficient for expressing such references precisely and unambiguously, many social computing platforms coin identifiers for topics, places, events, and people and provide interfaces for finding and selecting these identifiers from controlled lists. Using these interfaces, users collaboratively construct a web of links among entities. This model needn't be limited to social networking sites. Understanding an item in a digital library or museum requires context: information about the topics, places, events, and people to which the item is related. Students, journalists and investigators traditionally discover this kind of context by asking "the four Ws": what, where, when and who. The DCMI Kernel Metadata Community has recognized the four Ws as fundamental elements of descriptions (Kunze & Turner, 2007). Making better use of metadata to answer these questions via links to appropriate contextual resources has been our focus in a series of research projects over the past few years. Currently we are building a system for enabling readers of any text to relate any topic, place, event or person mentioned in the text to the best explanatory resources available. This system is being developed with two different corpora: a diverse variety of biographical texts characterized by very rich and dense mentions of people, events, places and activities, and a large collection of newly-scanned books, journals and manuscripts relating to Irish culture and history. Like a social computing platform, our system consists of tools for referring to topics, places, events or people, disambiguating these references by linking them to unique identifiers, and using the disambiguated references to provide useful information in context and to link to related resources. Yet current social computing platforms, while usually amenable to importing and exporting data, tend to mint proprietary identifiers and expect links to be traversed using their own interfaces. We take a different approach, using identifiers from both established and emerging naming authorities, representing relationships using standardized metadata vocabularies, and publishing those representations using standard protocols so that links can be stored and traversed anywhere. Central to our strategy is to move from appearances in a text to naming authorities to the the construction of links for searching or querying trusted resources. Using identifiers from naming authorities, rather than literal values (as in the DCMI Kernel) or keys from a proprietary database, makes it more likely that links constructed using our system will continue to be useful in the future. WorldCat Identities URIs (http://worldcat.org/identities/) linked to Library of Congress and Deutsche Nationalbibliothek authority files for persons and organizations and Geonames (http://geonames.org/) URIs for places are stable identifiers attached to a wealth of useful metadata. Yet no naming authority can be totally comprehensive, so our system can be extended to use new sources of identifiers as needed. For example, we are experimenting with using Freebase (http://freebase.com/) URIs to identify historical events, for which no established naming authority currently exists. Stable identifiers (URIs), standardized hyperlinked data formats (XML), and uniform publishing protocols (HTTP) are key ingredients of the web's open architecture. Our system provides an example of how this open architecture can be exploited to build flexible and useful tools for connecting resources via shared references to topics, places, events, and people.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  19. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.00
    0.0039728354 = product of:
      0.023837011 = sum of:
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.047674023 = score(doc=3376,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    31. 7.2010 16:58:22
  20. OWL Web Ontology Language Test Cases (2004) 0.00
    0.0039728354 = product of:
      0.023837011 = sum of:
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.047674023 = score(doc=4685,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    14. 8.2011 13:33:22

Types

  • a 52
  • el 31
  • m 12
  • s 7
  • n 5
  • x 1
  • More… Less…

Subjects

Classifications