Search (98 results, page 1 of 5)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × year_i:[2000 TO 2010}
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.30
    0.30280456 = product of:
      0.4710293 = sum of:
        0.015586706 = product of:
          0.07793353 = sum of:
            0.07793353 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.07793353 = score(doc=701,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.2 = coord(1/5)
        0.018629227 = weight(_text_:system in 701) [ClassicSimilarity], result of:
          0.018629227 = score(doc=701,freq=6.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.24108742 = fieldWeight in 701, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.0100241685 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=701,freq=18.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.03712161 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.03712161 = score(doc=701,freq=28.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.64285713 = coord(9/14)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.02
    0.017752208 = product of:
      0.062132724 = sum of:
        0.032266766 = weight(_text_:system in 2556) [ClassicSimilarity], result of:
          0.032266766 = score(doc=2556,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 2556, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.0050120843 = weight(_text_:information in 2556) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=2556,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.014881751 = weight(_text_:retrieval in 2556) [ClassicSimilarity], result of:
          0.014881751 = score(doc=2556,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.20052543 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.019944249 = score(doc=2556,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.2857143 = coord(4/14)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Source
    Online information review. 27(2003) no.2, S.94-101
  3. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.01
    0.0109178955 = product of:
      0.050950177 = sum of:
        0.022816047 = weight(_text_:system in 4704) [ClassicSimilarity], result of:
          0.022816047 = score(doc=4704,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.29527056 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.0070881573 = weight(_text_:information in 4704) [ClassicSimilarity], result of:
          0.0070881573 = score(doc=4704,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.16457605 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.021045974 = weight(_text_:retrieval in 4704) [ClassicSimilarity], result of:
          0.021045974 = score(doc=4704,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.2835858 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
      0.21428572 = coord(3/14)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Source
    CIKM '04 Proceedings of the thirteenth ACM international conference on Information and knowledge management
  4. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.01
    0.010753322 = product of:
      0.037636627 = sum of:
        0.0067222426 = weight(_text_:system in 150) [ClassicSimilarity], result of:
          0.0067222426 = score(doc=150,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.08699492 = fieldWeight in 150, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.0051154373 = weight(_text_:information in 150) [ClassicSimilarity], result of:
          0.0051154373 = score(doc=150,freq=12.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.11877254 = fieldWeight in 150, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.018602187 = weight(_text_:retrieval in 150) [ClassicSimilarity], result of:
          0.018602187 = score(doc=150,freq=18.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.25065678 = fieldWeight in 150, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.007196761 = product of:
          0.014393522 = sum of:
            0.014393522 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.014393522 = score(doc=150,freq=6.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.2857143 = coord(4/14)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Information storage and retrieval systems
  5. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.01
    0.010733546 = product of:
      0.037567407 = sum of:
        0.015210699 = weight(_text_:system in 2656) [ClassicSimilarity], result of:
          0.015210699 = score(doc=2656,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.19684705 = fieldWeight in 2656, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.005787457 = weight(_text_:information in 2656) [ClassicSimilarity], result of:
          0.005787457 = score(doc=2656,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1343758 = fieldWeight in 2656, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.009921167 = weight(_text_:retrieval in 2656) [ClassicSimilarity], result of:
          0.009921167 = score(doc=2656,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.13368362 = fieldWeight in 2656, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.0066480828 = product of:
          0.0132961655 = sum of:
            0.0132961655 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
              0.0132961655 = score(doc=2656,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.15476047 = fieldWeight in 2656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2656)
          0.5 = coord(1/2)
      0.2857143 = coord(4/14)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004) 0.01
    0.009874061 = product of:
      0.04607895 = sum of:
        0.021511177 = weight(_text_:system in 700) [ClassicSimilarity], result of:
          0.021511177 = score(doc=700,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.27838376 = fieldWeight in 700, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.0047254385 = weight(_text_:information in 700) [ClassicSimilarity], result of:
          0.0047254385 = score(doc=700,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.10971737 = fieldWeight in 700, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.019842334 = weight(_text_:retrieval in 700) [ClassicSimilarity], result of:
          0.019842334 = score(doc=700,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 700, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
      0.21428572 = coord(3/14)
    
    Abstract
    The Semantic Web realization depends on the availability of a critical mass of metadata for the web content, associated with the respective formal knowledge about the world. We claim that the Semantic Web, at its current stage of development, is in a state of a critical need of metadata generation and usage schemata that are specific, well-defined and easy to understand. This paper introduces our vision for a holistic architecture for semantic annotation, indexing, and retrieval of documents with regard to extensive semantic repositories. A system (called KIM), implementing this concept, is presented in brief and it is used for the purposes of evaluation and demonstration. A particular schema for semantic annotation with respect to real-world entities is proposed. The underlying philosophy is that a practical semantic annotation is impossible without some particular knowledge modelling commitments. Our understanding is that a system for such semantic annotation should be based upon a simple model of real-world entity classes, complemented with extensive instance knowledge. To ensure the efficiency, ease of sharing, and reusability of the metadata, we introduce an upper-level ontology (of about 250 classes and 100 properties), which starts with some basic philosophical distinctions and then goes down to the most common entity types (people, companies, cities, etc.). Thus it encodes many of the domain-independent commonsense concepts and allows straightforward domain-specific extensions. On the basis of the ontology, a large-scale knowledge base of entity descriptions is bootstrapped, and further extended and maintained. Currently, the knowledge bases usually scales between 105 and 106 descriptions. Finally, this paper presents a semantically enhanced information extraction system, which provides automatic semantic annotation with references to classes in the ontology and to instances. The system has been running over a continuously growing document collection (currently about 0.5 million news articles), so it has been under constant testing and evaluation for some time now. On the basis of these semantic annotations, we perform semantic based indexing and retrieval where users can mix traditional information retrieval (IR) queries and ontology-based ones. We argue that such large-scale, fully automatic methods are essential for the transformation of the current largely textual web into a Semantic Web.
  7. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.007458717 = product of:
      0.052211016 = sum of:
        0.032266766 = weight(_text_:system in 100) [ClassicSimilarity], result of:
          0.032266766 = score(doc=100,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=100)
        0.019944249 = product of:
          0.039888497 = sum of:
            0.039888497 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.039888497 = score(doc=100,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    22. 9.2007 15:41:14
  8. Shaw, R.; Buckland, M.: Open identification and linking of the four Ws (2008) 0.01
    0.0070723547 = product of:
      0.03300432 = sum of:
        0.023052491 = weight(_text_:system in 2665) [ClassicSimilarity], result of:
          0.023052491 = score(doc=2665,freq=12.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.29833046 = fieldWeight in 2665, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2665)
        0.0041347584 = weight(_text_:information in 2665) [ClassicSimilarity], result of:
          0.0041347584 = score(doc=2665,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.0960027 = fieldWeight in 2665, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2665)
        0.0058170725 = product of:
          0.011634145 = sum of:
            0.011634145 = weight(_text_:22 in 2665) [ClassicSimilarity], result of:
              0.011634145 = score(doc=2665,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.1354154 = fieldWeight in 2665, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2665)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    Platforms for social computing connect users via shared references to people with whom they have relationships, events attended, places lived in or traveled to, and topics such as favorite books or movies. Since free text is insufficient for expressing such references precisely and unambiguously, many social computing platforms coin identifiers for topics, places, events, and people and provide interfaces for finding and selecting these identifiers from controlled lists. Using these interfaces, users collaboratively construct a web of links among entities. This model needn't be limited to social networking sites. Understanding an item in a digital library or museum requires context: information about the topics, places, events, and people to which the item is related. Students, journalists and investigators traditionally discover this kind of context by asking "the four Ws": what, where, when and who. The DCMI Kernel Metadata Community has recognized the four Ws as fundamental elements of descriptions (Kunze & Turner, 2007). Making better use of metadata to answer these questions via links to appropriate contextual resources has been our focus in a series of research projects over the past few years. Currently we are building a system for enabling readers of any text to relate any topic, place, event or person mentioned in the text to the best explanatory resources available. This system is being developed with two different corpora: a diverse variety of biographical texts characterized by very rich and dense mentions of people, events, places and activities, and a large collection of newly-scanned books, journals and manuscripts relating to Irish culture and history. Like a social computing platform, our system consists of tools for referring to topics, places, events or people, disambiguating these references by linking them to unique identifiers, and using the disambiguated references to provide useful information in context and to link to related resources. Yet current social computing platforms, while usually amenable to importing and exporting data, tend to mint proprietary identifiers and expect links to be traversed using their own interfaces. We take a different approach, using identifiers from both established and emerging naming authorities, representing relationships using standardized metadata vocabularies, and publishing those representations using standard protocols so that links can be stored and traversed anywhere. Central to our strategy is to move from appearances in a text to naming authorities to the the construction of links for searching or querying trusted resources. Using identifiers from naming authorities, rather than literal values (as in the DCMI Kernel) or keys from a proprietary database, makes it more likely that links constructed using our system will continue to be useful in the future. WorldCat Identities URIs (http://worldcat.org/identities/) linked to Library of Congress and Deutsche Nationalbibliothek authority files for persons and organizations and Geonames (http://geonames.org/) URIs for places are stable identifiers attached to a wealth of useful metadata. Yet no naming authority can be totally comprehensive, so our system can be extended to use new sources of identifiers as needed. For example, we are experimenting with using Freebase (http://freebase.com/) URIs to identify historical events, for which no established naming authority currently exists. Stable identifiers (URIs), standardized hyperlinked data formats (XML), and uniform publishing protocols (HTTP) are key ingredients of the web's open architecture. Our system provides an example of how this open architecture can be exploited to build flexible and useful tools for connecting resources via shared references to topics, places, events, and people.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  9. Scheir, P.; Pammer, V.; Lindstaedt, S.N.: Information retrieval on the Semantic Web : does it exist? (2007) 0.01
    0.006828477 = product of:
      0.047799338 = sum of:
        0.013075255 = weight(_text_:information in 4329) [ClassicSimilarity], result of:
          0.013075255 = score(doc=4329,freq=10.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.3035872 = fieldWeight in 4329, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
        0.034724083 = weight(_text_:retrieval in 4329) [ClassicSimilarity], result of:
          0.034724083 = score(doc=4329,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.46789268 = fieldWeight in 4329, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
      0.14285715 = coord(2/14)
    
    Abstract
    Plenty of contemporary attempts to search exist that are associated with the area of Semantic Web. But which of them qualify as information retrieval for the Semantic Web? Do such approaches exist? To answer these questions we take a look at the nature of the Semantic Web and Semantic Desktop and at definitions for information and data retrieval. We survey current approaches referred to by their authors as information retrieval for the Semantic Web or that use Semantic Web technology for search.
    Source
    Lernen - Wissen - Adaption : workshop proceedings / LWA 2007, Halle, September 2007. Martin Luther University Halle-Wittenberg, Institute for Informatics, Databases and Information Systems. Hrsg.: Alexander Hinneburg
  10. Engels, R.H.P.; Lech, T.Ch.: Generating ontologies for the Semantic Web : OntoBuilder (2004) 0.01
    0.0066949623 = product of:
      0.031243157 = sum of:
        0.010755588 = weight(_text_:system in 4404) [ClassicSimilarity], result of:
          0.010755588 = score(doc=4404,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.010566402 = weight(_text_:information in 4404) [ClassicSimilarity], result of:
          0.010566402 = score(doc=4404,freq=20.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.2453355 = fieldWeight in 4404, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.009921167 = weight(_text_:retrieval in 4404) [ClassicSimilarity], result of:
          0.009921167 = score(doc=4404,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.13368362 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
      0.21428572 = coord(3/14)
    
    Abstract
    Significant progress has been made in technologies for publishing and distributing knowledge and information on the web. However, much of the published information is not organized, and it is hard to find answers to questions that require more than a keyword search. In general, one can say that the web is organizing itself. Information is often published in relatively ad hoc fashion. Typically, concern about the presentation of content has been limited to purely layout issues. This, combined with the fact that the representation language used on the World Wide Web (HTML) is mainly format-oriented, makes publishing on the WWW easy, giving it an enormous expressiveness. People add private, educational or organizational content to the web that is of an immensely diverse nature. Content on the web is growing closer to a real universal knowledge base, with one problem relatively undefined; the problem of the interpretation of its contents. Although widely acknowledged for its general and universal advantages, the increasing popularity of the web also shows us some major drawbacks. The developments of the information content on the web during the last year alone, clearly indicates the need for some changes. Perhaps one of the most significant problems with the web as a distributed information system is the difficulty of finding and comparing information.
    Thus, there is a clear need for the web to become more semantic. The aim of introducing semantics into the web is to enhance the precision of search, but also enable the use of logical reasoning on web contents in order to answer queries. The CORPORUM OntoBuilder toolset is developed specifically for this task. It consists of a set of applications that can fulfil a variety of tasks, either as stand-alone tools, or augmenting each other. Important tasks that are dealt with by CORPORUM are related to document and information retrieval (find relevant documents, or support the user finding them), as well as information extraction (building a knowledge base from web documents to answer queries), information dissemination (summarizing strategies and information visualization), and automated document classification strategies. First versions of the toolset are encouraging in that they show large potential as a supportive technology for building up the Semantic Web. In this chapter, methods for transforming the current web into a semantic web are discussed, as well as a technical solution that can perform this task: the CORPORUM tool set. First, the toolset is introduced; followed by some pragmatic issues relating to the approach; then there will be a short overview of the theory in relation to CognIT's vision; and finally, a discussion on some of the applications that arose from the project.
  11. Sánchez, M.F.: Semantically enhanced Information Retrieval : an ontology-based approach (2006) 0.01
    0.0062043 = product of:
      0.043430097 = sum of:
        0.008353474 = weight(_text_:information in 4327) [ClassicSimilarity], result of:
          0.008353474 = score(doc=4327,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.19395474 = fieldWeight in 4327, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
        0.035076622 = weight(_text_:retrieval in 4327) [ClassicSimilarity], result of:
          0.035076622 = score(doc=4327,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.47264296 = fieldWeight in 4327, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
      0.14285715 = coord(2/14)
    
    Content
    Part I. Analyzing the state of the art - What is semantic search? Part II. The proposal - An ontology-based IR model - Semantic retrieval on the Web Part III. Extensions - Semantic knowledge gateway - Coping with knowledge incompleteness
  12. Mehler, A.; Waltinger, U.: Automatic enrichment of metadata (2009) 0.01
    0.0059076445 = product of:
      0.04135351 = sum of:
        0.021511177 = weight(_text_:system in 4840) [ClassicSimilarity], result of:
          0.021511177 = score(doc=4840,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.27838376 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=4840)
        0.019842334 = weight(_text_:retrieval in 4840) [ClassicSimilarity], result of:
          0.019842334 = score(doc=4840,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4840)
      0.14285715 = coord(2/14)
    
    Abstract
    In this talk we present a retrieval model based on social ontologies. More specifically, we utilize the Wikipedia category system in order to perform semantic searches. That is, textual input is used to build queries by means of which documents are retrieved which do not necessarily contain any query term but are semantically related to the input text by virtue of their content. We present a desktop which utilizes this search facility in a web-based environment - the so called eHumanities Desktop.
  13. Shah, U.; Finin, T.; Joshi, A.; Cost, R.S.; Mayfield, J.: Information retrieval on the Semantic Web (2002) 0.01
    0.005742856 = product of:
      0.040199988 = sum of:
        0.010128049 = weight(_text_:information in 696) [ClassicSimilarity], result of:
          0.010128049 = score(doc=696,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23515764 = fieldWeight in 696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
        0.03007194 = weight(_text_:retrieval in 696) [ClassicSimilarity], result of:
          0.03007194 = score(doc=696,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40520695 = fieldWeight in 696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
      0.14285715 = coord(2/14)
    
    Abstract
    We describe an apporach to retrieval of documents that consist of both free text and semantically enriched markup. In particular, we present the design and implementation prototype of a framework in which both documents and queries can be marked up with statements in the DAML+OIL semantic web language. These statement provide both structured and semi-structured information about the documents and their content. We claim that indexing text and semantic markup will significantly improve retrieval performance. Outr approach allows inferencing to be done over this information at several points: when a document is indexed,when a query is processed and when query results are evaluated.
  14. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.01
    0.0052833306 = product of:
      0.03698331 = sum of:
        0.011207362 = weight(_text_:information in 439) [ClassicSimilarity], result of:
          0.011207362 = score(doc=439,freq=10.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.2602176 = fieldWeight in 439, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.025775949 = weight(_text_:retrieval in 439) [ClassicSimilarity], result of:
          0.025775949 = score(doc=439,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.34732026 = fieldWeight in 439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
      0.14285715 = coord(2/14)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Information storage and retrieval systems
    Information systems
    Subject
    Information storage and retrieval systems
    Information systems
  15. Stuckenschmidt, H.; Harmelen, F. van: Information sharing on the semantic web (2005) 0.01
    0.0052309306 = product of:
      0.03661651 = sum of:
        0.011813596 = weight(_text_:information in 2789) [ClassicSimilarity], result of:
          0.011813596 = score(doc=2789,freq=16.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27429342 = fieldWeight in 2789, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2789)
        0.024802918 = weight(_text_:retrieval in 2789) [ClassicSimilarity], result of:
          0.024802918 = score(doc=2789,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.33420905 = fieldWeight in 2789, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2789)
      0.14285715 = coord(2/14)
    
    Classification
    ST 515 Informatik / Monographien / Einzelne Anwendungen der Datenverarbeitung / Wirtschaftsinformatik / Wissensmanagement, Information engineering
    LCSH
    Ontologies (Information retrieval)
    RSWK
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    RVK
    ST 515 Informatik / Monographien / Einzelne Anwendungen der Datenverarbeitung / Wirtschaftsinformatik / Wissensmanagement, Information engineering
    Series
    Advanced information and knowledge processing
    Subject
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    Ontologies (Information retrieval)
  16. Miles, A.; Pérez-Agüera, J.R.: SKOS: Simple Knowledge Organisation for the Web (2006) 0.01
    0.0051691886 = product of:
      0.03618432 = sum of:
        0.018822279 = weight(_text_:system in 504) [ClassicSimilarity], result of:
          0.018822279 = score(doc=504,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.2435858 = fieldWeight in 504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=504)
        0.017362041 = weight(_text_:retrieval in 504) [ClassicSimilarity], result of:
          0.017362041 = score(doc=504,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23394634 = fieldWeight in 504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=504)
      0.14285715 = coord(2/14)
    
    Abstract
    This article introduces the Simple Knowledge Organisation System (SKOS), a Semantic Web language for representing controlled structured vocabularies, including thesauri, classification schemes, subject heading systems and taxonomies. SKOS provides a framework for publishing thesauri, classification schemes, and subject indexes on the Web, and for applying these systems to resource collections that are part of the SemanticWeb. SemanticWeb applications may harvest and merge SKOS data, to integrate and enhances retrieval service across multiple collections (e.g. libraries). This article also describes some alternatives for integrating Semantic Web services based on the Resource Description Framework (RDF) and SKOS into a distributed enterprise architecture.
  17. Towards the Semantic Web : ontology-driven knowledge management (2004) 0.01
    0.0051041073 = product of:
      0.023819167 = sum of:
        0.008066691 = weight(_text_:system in 4401) [ClassicSimilarity], result of:
          0.008066691 = score(doc=4401,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.104393914 = fieldWeight in 4401, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
        0.008311601 = weight(_text_:information in 4401) [ClassicSimilarity], result of:
          0.008311601 = score(doc=4401,freq=22.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.19298252 = fieldWeight in 4401, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
        0.0074408753 = weight(_text_:retrieval in 4401) [ClassicSimilarity], result of:
          0.0074408753 = score(doc=4401,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.10026272 = fieldWeight in 4401, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
      0.21428572 = coord(3/14)
    
    Abstract
    With the current changes driven by the expansion of the World Wide Web, this book uses a different approach from other books on the market: it applies ontologies to electronically available information to improve the quality of knowledge management in large and distributed organizations. Ontologies are formal theories supporting knowledge sharing and reuse. They can be used to explicitly represent semantics of semi-structured information. These enable sophisticated automatic support for acquiring, maintaining and accessing information. Methodology and tools are developed for intelligent access to large volumes of semi-structured and textual information sources in intra- and extra-, and internet-based environments to employ the full power of ontologies in supporting knowledge management from the information client perspective and the information provider. The aim of the book is to support efficient and effective knowledge management and focuses on weakly-structured online information sources. It is aimed primarily at researchers in the area of knowledge management and information retrieval and will also be a useful reference for students in computer science at the postgraduate level and for business managers who are aiming to increase the corporations' information infrastructure. The Semantic Web is a very important initiative affecting the future of the WWW that is currently generating huge interest. The book covers several highly significant contributions to the semantic web research effort, including a new language for defining ontologies, several novel software tools and a coherent methodology for the application of the tools for business advantage. It also provides 3 case studies which give examples of the real benefits to be derived from the adoption of semantic-web based ontologies in "real world" situations. As such, the book is an excellent mixture of theory, tools and applications in an important area of WWW research. * Provides guidelines for introducing knowledge management concepts and tools into enterprises, to help knowledge providers present their knowledge efficiently and effectively. * Introduces an intelligent search tool that supports users in accessing information and a tool environment for maintenance, conversion and acquisition of information sources. * Discusses three large case studies which will help to develop the technology according to the actual needs of large and or virtual organisations and will provide a testbed for evaluating tools and methods. The book is aimed at people with at least a good understanding of existing WWW technology and some level of technical understanding of the underpinning technologies (XML/RDF). It will be of interest to graduate students, academic and industrial researchers in the field, and the many industrial personnel who are tracking WWW technology developments in order to understand the business implications. It could also be used to support undergraduate courses in the area but is not itself an introductory text.
    Content
    Inhalt: OIL and DAML + OIL: Ontology Languages for the Semantic Web (pages 11-31) / Dieter Fensel, Frank van Harmelen and Ian Horrocks A Methodology for Ontology-Based Knowledge Management (pages 33-46) / York Sure and Rudi Studer Ontology Management: Storing, Aligning and Maintaining Ontologies (pages 47-69) / Michel Klein, Ying Ding, Dieter Fensel and Borys Omelayenko Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema (pages 71-89) / Jeen Broekstra, Arjohn Kampman and Frank van Harmelen Generating Ontologies for the Semantic Web: OntoBuilder (pages 91-115) / R. H. P. Engels and T. Ch. Lech OntoEdit: Collaborative Engineering of Ontologies (pages 117-132) / York Sure, Michael Erdmann and Rudi Studer QuizRDF: Search Technology for the Semantic Web (pages 133-144) / John Davies, Richard Weeks and Uwe Krohn Spectacle (pages 145-159) / Christiaan Fluit, Herko ter Horst, Jos van der Meer, Marta Sabou and Peter Mika OntoShare: Evolving Ontologies in a Knowledge Sharing System (pages 161-177) / John Davies, Alistair Duke and Audrius Stonkus Ontology Middleware and Reasoning (pages 179-196) / Atanas Kiryakov, Kiril Simov and Damyan Ognyanov Ontology-Based Knowledge Management at Work: The Swiss Life Case Studies (pages 197-218) / Ulrich Reimer, Peter Brockhausen, Thorsten Lau and Jacqueline R. Reich Field Experimenting with Semantic Web Tools in a Virtual Organization (pages 219-244) / Victor Iosif, Peter Mika, Rikard Larsson and Hans Akkermans A Future Perspective: Exploiting Peer-To-Peer and the Semantic Web for Knowledge Management (pages 245-264) / Dieter Fensel, Steffen Staab, Rudi Studer, Frank van Harmelen and John Davies Conclusions: Ontology-driven Knowledge Management - Towards the Semantic Web? (pages 265-266) / John Davies, Dieter Fensel and Frank van Harmelen
  18. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.00
    0.0049949754 = product of:
      0.034964826 = sum of:
        0.0072343214 = weight(_text_:information in 1905) [ClassicSimilarity], result of:
          0.0072343214 = score(doc=1905,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.16796975 = fieldWeight in 1905, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.027730504 = weight(_text_:retrieval in 1905) [ClassicSimilarity], result of:
          0.027730504 = score(doc=1905,freq=10.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.37365708 = fieldWeight in 1905, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Theme
    Information Gateway
    Semantisches Umfeld in Indexierung u. Retrieval
  19. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.00
    0.004756222 = product of:
      0.033293553 = sum of:
        0.011813596 = weight(_text_:information in 6061) [ClassicSimilarity], result of:
          0.011813596 = score(doc=6061,freq=16.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27429342 = fieldWeight in 6061, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.021479957 = weight(_text_:retrieval in 6061) [ClassicSimilarity], result of:
          0.021479957 = score(doc=6061,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.28943354 = fieldWeight in 6061, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
      0.14285715 = coord(2/14)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
    Source
    Information und Sprache: Beiträge zu Informationswissenschaft, Computerlinguistik, Bibliothekswesen und verwandten Fächern. Festschrift für Harald H. Zimmermann. Herausgegeben von Ilse Harms, Heinz-Dirk Luckhardt und Hans W. Giessen
  20. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.00
    0.004741952 = product of:
      0.02212911 = sum of:
        0.010755588 = weight(_text_:system in 2661) [ClassicSimilarity], result of:
          0.010755588 = score(doc=2661,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 2661, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.0047254385 = weight(_text_:information in 2661) [ClassicSimilarity], result of:
          0.0047254385 = score(doc=2661,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.10971737 = fieldWeight in 2661, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.0066480828 = product of:
          0.0132961655 = sum of:
            0.0132961655 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
              0.0132961655 = score(doc=2661,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.15476047 = fieldWeight in 2661, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Types

  • a 57
  • el 34
  • m 12
  • s 7
  • n 5
  • r 1
  • x 1
  • More… Less…

Subjects

Classifications