Search (55 results, page 1 of 3)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × year_i:[2010 TO 2020}
  1. Semantic applications (2018) 0.05
    0.045373395 = product of:
      0.09074679 = sum of:
        0.07263626 = weight(_text_:management in 5204) [ClassicSimilarity], result of:
          0.07263626 = score(doc=5204,freq=12.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.45609936 = fieldWeight in 5204, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
        0.018110527 = product of:
          0.036221053 = sum of:
            0.036221053 = weight(_text_:science in 5204) [ClassicSimilarity], result of:
              0.036221053 = score(doc=5204,freq=8.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.2910318 = fieldWeight in 5204, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Computer science
    Management information systems
    Computer Science
    Management of Computing and Information Systems
    Subject
    Computer science
    Management information systems
    Computer Science
    Management of Computing and Information Systems
  2. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.04
    0.0394849 = product of:
      0.0789698 = sum of:
        0.029355595 = weight(_text_:management in 1155) [ClassicSimilarity], result of:
          0.029355595 = score(doc=1155,freq=4.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18433036 = fieldWeight in 1155, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1155)
        0.049614206 = sum of:
          0.017928507 = weight(_text_:science in 1155) [ClassicSimilarity], result of:
            0.017928507 = score(doc=1155,freq=4.0), product of:
              0.124457374 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.047248192 = queryNorm
              0.1440534 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.0316857 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
            0.0316857 = score(doc=1155,freq=4.0), product of:
              0.16545512 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047248192 = queryNorm
              0.19150631 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
      0.5 = coord(2/4)
    
    Abstract
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    Date
    17.12.2013 12:51:22
    Series
    Communications in computer and information science; vol.390
  3. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.04
    0.03731085 = product of:
      0.0746217 = sum of:
        0.050323877 = weight(_text_:management in 3274) [ClassicSimilarity], result of:
          0.050323877 = score(doc=3274,freq=4.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.31599492 = fieldWeight in 3274, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.024297824 = product of:
          0.04859565 = sum of:
            0.04859565 = weight(_text_:science in 3274) [ClassicSimilarity], result of:
              0.04859565 = score(doc=3274,freq=10.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.39046016 = fieldWeight in 3274, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3274)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    LCSH
    Computer science
    Database management
    Text processing (Computer science)
    Series
    Communications in computer and information science; 544
    Subject
    Computer science
    Database management
    Text processing (Computer science)
  4. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.03
    0.03473606 = product of:
      0.06947212 = sum of:
        0.05136159 = weight(_text_:management in 3934) [ClassicSimilarity], result of:
          0.05136159 = score(doc=3934,freq=6.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.32251096 = fieldWeight in 3934, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.018110527 = product of:
          0.036221053 = sum of:
            0.036221053 = weight(_text_:science in 3934) [ClassicSimilarity], result of:
              0.036221053 = score(doc=3934,freq=8.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.2910318 = fieldWeight in 3934, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    LCSH
    Computer science
    Database management
    Computer Science
    Subject
    Computer science
    Database management
    Computer Science
  5. Metadata and semantics research : 5th International Conference, MTSR 2011, Izmir, Turkey, October 12-14, 2011. Proceedings (2011) 0.03
    0.034572445 = product of:
      0.06914489 = sum of:
        0.050323877 = weight(_text_:management in 1152) [ClassicSimilarity], result of:
          0.050323877 = score(doc=1152,freq=4.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.31599492 = fieldWeight in 1152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=1152)
        0.018821014 = product of:
          0.03764203 = sum of:
            0.03764203 = weight(_text_:science in 1152) [ClassicSimilarity], result of:
              0.03764203 = score(doc=1152,freq=6.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.30244917 = fieldWeight in 1152, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1152)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    LCSH
    Computer science
    Database management
    Series
    Communications in computer and information science; vol.240
    Subject
    Computer science
    Database management
  6. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.03
    0.032947272 = product of:
      0.065894544 = sum of:
        0.041936565 = weight(_text_:management in 2192) [ClassicSimilarity], result of:
          0.041936565 = score(doc=2192,freq=4.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.2633291 = fieldWeight in 2192, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.023957977 = product of:
          0.047915954 = sum of:
            0.047915954 = weight(_text_:science in 2192) [ClassicSimilarity], result of:
              0.047915954 = score(doc=2192,freq=14.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.38499892 = fieldWeight in 2192, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
    LCSH
    Computer science
    Database management
    Text processing (Computer science)
    Series
    Communications in computer and information science; 478
    Subject
    Computer science
    Database management
    Text processing (Computer science)
  7. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.03
    0.028845333 = product of:
      0.057690665 = sum of:
        0.047445804 = weight(_text_:management in 5329) [ClassicSimilarity], result of:
          0.047445804 = score(doc=5329,freq=8.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.29792285 = fieldWeight in 5329, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
        0.010244861 = product of:
          0.020489722 = sum of:
            0.020489722 = weight(_text_:science in 5329) [ClassicSimilarity], result of:
              0.020489722 = score(doc=5329,freq=4.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.16463245 = fieldWeight in 5329, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5329)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.
    LCSH
    Computer science
    Subject
    Computer science
  8. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.03
    0.025058959 = product of:
      0.100235835 = sum of:
        0.100235835 = sum of:
          0.036221053 = weight(_text_:science in 2090) [ClassicSimilarity], result of:
            0.036221053 = score(doc=2090,freq=2.0), product of:
              0.124457374 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.047248192 = queryNorm
              0.2910318 = fieldWeight in 2090, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.078125 = fieldNorm(doc=2090)
          0.06401478 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
            0.06401478 = score(doc=2090,freq=2.0), product of:
              0.16545512 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047248192 = queryNorm
              0.38690117 = fieldWeight in 2090, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=2090)
      0.25 = coord(1/4)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  9. Iorio, A. di; Peroni, S.; Vitali, F.: ¬A Semantic Web approach to everyday overlapping markup (2011) 0.02
    0.019354446 = product of:
      0.03870889 = sum of:
        0.029653627 = weight(_text_:management in 4749) [ClassicSimilarity], result of:
          0.029653627 = score(doc=4749,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18620178 = fieldWeight in 4749, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4749)
        0.009055263 = product of:
          0.018110527 = sum of:
            0.018110527 = weight(_text_:science in 4749) [ClassicSimilarity], result of:
              0.018110527 = score(doc=4749,freq=2.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.1455159 = fieldWeight in 4749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4749)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Overlapping structures in XML are not symptoms of a misunderstanding of the intrinsic characteristics of a text document nor evidence of extreme scholarly requirements far beyond those needed by the most common XML-based applications. On the contrary, overlaps have started to appear in a large number of incredibly popular applications hidden under the guise of syntactical tricks to the basic hierarchy of the XML data format. Unfortunately, syntactical tricks have the drawback that the affected structures require complicated workarounds to support even the simplest query or usage. In this article, we present Extremely Annotational Resource Description Framework (RDF) Markup (EARMARK), an approach to overlapping markup that simplifies and streamlines the management of multiple hierarchies on the same content, and provides an approach to sophisticated queries and usages over such structures without the need of ad-hoc applications, simply by using Semantic Web tools and languages. We compare how relevant tasks (e.g., the identification of the contribution of an author in a word processor document) are of some substantial complexity when using the original data format and become more or less trivial when using EARMARK. We finally evaluate positively the memory and disk requirements of EARMARK documents in comparison to Open Office and Microsoft Word XML-based formats.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1696-1716
  10. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.02
    0.018262928 = product of:
      0.036525857 = sum of:
        0.023722902 = weight(_text_:management in 1626) [ClassicSimilarity], result of:
          0.023722902 = score(doc=1626,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.14896142 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.012802956 = product of:
          0.025605911 = sum of:
            0.025605911 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.025605911 = score(doc=1626,freq=2.0), product of:
                0.16545512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047248192 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.519-536
  11. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.018262928 = product of:
      0.036525857 = sum of:
        0.023722902 = weight(_text_:management in 1634) [ClassicSimilarity], result of:
          0.023722902 = score(doc=1634,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.14896142 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.012802956 = product of:
          0.025605911 = sum of:
            0.025605911 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.025605911 = score(doc=1634,freq=2.0), product of:
                0.16545512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047248192 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  12. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.02
    0.01754127 = product of:
      0.07016508 = sum of:
        0.07016508 = sum of:
          0.02535474 = weight(_text_:science in 3283) [ClassicSimilarity], result of:
            0.02535474 = score(doc=3283,freq=2.0), product of:
              0.124457374 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.047248192 = queryNorm
              0.20372227 = fieldWeight in 3283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3283)
          0.044810344 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
            0.044810344 = score(doc=3283,freq=2.0), product of:
              0.16545512 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047248192 = queryNorm
              0.2708308 = fieldWeight in 3283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3283)
      0.25 = coord(1/4)
    
    Series
    Communications in computer and information science; 672
  13. ¬The Semantic Web: latest advances and new domains : 12th European Semantic Web Conference, ESWC 2015 Portoroz, Slovenia, May 31 -- June 4, 2015. Proceedings (2015) 0.02
    0.015483556 = product of:
      0.030967113 = sum of:
        0.023722902 = weight(_text_:management in 2028) [ClassicSimilarity], result of:
          0.023722902 = score(doc=2028,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.14896142 = fieldWeight in 2028, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.03125 = fieldNorm(doc=2028)
        0.0072442107 = product of:
          0.014488421 = sum of:
            0.014488421 = weight(_text_:science in 2028) [ClassicSimilarity], result of:
              0.014488421 = score(doc=2028,freq=2.0), product of:
                0.124457374 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.047248192 = queryNorm
                0.11641272 = fieldWeight in 2028, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2028)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 12th Extended Semantic Web Conference, ESWC 2014, held in Anissaras, Portoroz, Slovenia, in May/June 2015. The 43 revised full papers presented together with three invited talks were carefully reviewed and selected from 164 submissions. This program was completed by a demonstration and poster session, in which researchers had the chance to present their latest results and advances in the form of live demos. In addition, the PhD Symposium program included 12 contributions, selected out of 16 submissions. The core tracks of the research conference were complemented with new tracks focusing on linking machine and human computation at web scale (cognition and Semantic Web, Human Computation and Crowdsourcing) beside the following subjects Vocabularies, Schemas, Ontologies, Reasoning, Linked Data, Semantic Web and Web Science, Semantic Data Management, Big data, Scalability, Natural Language Processing and Information Retrieval, Machine Learning, Mobile Web, Internet of Things and Semantic Streams, Services, Web APIs and the Web of Things, Cognition and Semantic Web, Human Computation and Crowdsourcing and In-Use Industrial Track as well
  14. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.02
    0.015035374 = product of:
      0.060141496 = sum of:
        0.060141496 = sum of:
          0.021732632 = weight(_text_:science in 662) [ClassicSimilarity], result of:
            0.021732632 = score(doc=662,freq=2.0), product of:
              0.124457374 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.047248192 = queryNorm
              0.17461908 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
          0.038408864 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
            0.038408864 = score(doc=662,freq=2.0), product of:
              0.16545512 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047248192 = queryNorm
              0.23214069 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
      0.25 = coord(1/4)
    
    Date
    22. 3.2013 19:29:20
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.464-479
  15. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.02
    0.015035374 = product of:
      0.060141496 = sum of:
        0.060141496 = sum of:
          0.021732632 = weight(_text_:science in 2024) [ClassicSimilarity], result of:
            0.021732632 = score(doc=2024,freq=2.0), product of:
              0.124457374 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.047248192 = queryNorm
              0.17461908 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
          0.038408864 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
            0.038408864 = score(doc=2024,freq=2.0), product of:
              0.16545512 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047248192 = queryNorm
              0.23214069 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
      0.25 = coord(1/4)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  16. Vatant, B.: Porting library vocabularies to the Semantic Web, and back : a win-win round trip (2010) 0.01
    0.008896088 = product of:
      0.035584353 = sum of:
        0.035584353 = weight(_text_:management in 3968) [ClassicSimilarity], result of:
          0.035584353 = score(doc=3968,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.22344214 = fieldWeight in 3968, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=3968)
      0.25 = coord(1/4)
    
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  17. Auer, S.; Lehmann, J.: Making the Web a data washing machine : creating knowledge out of interlinked data (2010) 0.01
    0.007413407 = product of:
      0.029653627 = sum of:
        0.029653627 = weight(_text_:management in 112) [ClassicSimilarity], result of:
          0.029653627 = score(doc=112,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18620178 = fieldWeight in 112, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=112)
      0.25 = coord(1/4)
    
    Abstract
    Over the past 3 years, the semantic web activity has gained momentum with the widespread publishing of structured data as RDF. The Linked Data paradigm has therefore evolved from a practical research idea into a very promising candidate for addressing one of the biggest challenges in the area of the Semantic Web vision: the exploitation of the Web as a platform for data and information integration. To translate this initial success into a world-scale reality, a number of research challenges need to be addressed: the performance gap between relational and RDF data management has to be closed, coherence and quality of data published on theWeb have to be improved, provenance and trust on the Linked Data Web must be established and generally the entrance barrier for data publishers and users has to be lowered. In this vision statement we discuss these challenges and argue, that research approaches tackling these challenges should be integrated into a mutual refinement cycle. We also present two crucial use-cases for the widespread adoption of linked data.
  18. Luo, Y.; Picalausa, F.; Fletcher, G.H.L.; Hidders, J.; Vansummeren, S.: Storing and indexing massive RDF datasets (2012) 0.01
    0.007413407 = product of:
      0.029653627 = sum of:
        0.029653627 = weight(_text_:management in 414) [ClassicSimilarity], result of:
          0.029653627 = score(doc=414,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18620178 = fieldWeight in 414, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=414)
      0.25 = coord(1/4)
    
    Abstract
    The resource description framework (RDF for short) provides a flexible method for modeling information on the Web [34,40]. All data items in RDF are uniformly represented as triples of the form (subject, predicate, object), sometimes also referred to as (subject, property, value) triples. As a running example for this chapter, a small fragment of an RDF dataset concerning music and music fans is given in Fig. 2.1. Spurred by efforts like the Linking Open Data project, increasingly large volumes of data are being published in RDF. Notable contributors in this respect include areas as diverse as the government, the life sciences, Web 2.0 communities, and so on. To give an idea of the volumes of RDF data concerned, as of September 2012, there are 31,634,213,770 triples in total published by data sources participating in the Linking Open Data project. Many individual data sources (like, e.g., PubMed, DBpedia, MusicBrainz) contain hundreds of millions of triples (797, 672, and 179 millions, respectively). These large volumes of RDF data motivate the need for scalable native RDF data management solutions capabable of efficiently storing, indexing, and querying RDF data. In this chapter, we present a general and up-to-date survey of the current state of the art in RDF storage and indexing.
  19. Virgilio, R. De; Cappellari, P.; Maccioni, A.; Torlone, R.: Path-oriented keyword search query over RDF (2012) 0.01
    0.007413407 = product of:
      0.029653627 = sum of:
        0.029653627 = weight(_text_:management in 429) [ClassicSimilarity], result of:
          0.029653627 = score(doc=429,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18620178 = fieldWeight in 429, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=429)
      0.25 = coord(1/4)
    
    Abstract
    We are witnessing a smooth evolution of the Web from a worldwide information space of linked documents to a global knowledge base, where resources are identified by means of uniform resource identifiers (URIs, essentially string identifiers) and are semantically described and correlated through resource description framework (RDF, a metadata data model) statements. With the size and availability of data constantly increasing (currently around 7 billion RDF triples and 150 million RDF links), a fundamental problem lies in the difficulty users face to find and retrieve the information they are interested in. In general, to access semantic data, users need to know the organization of data and the syntax of a specific query language (e.g., SPARQL or variants thereof). Clearly, this represents an obstacle to information access for nonexpert users. For this reason, keyword search-based systems are increasingly capturing the attention of researchers. Recently, many approaches to keyword-based search over structured and semistructured data have been proposed]. These approaches usually implement IR strategies on top of traditional database management systems with the goal of freeing the users from having to know data organization and query languages.
  20. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.01
    0.007413407 = product of:
      0.029653627 = sum of:
        0.029653627 = weight(_text_:management in 3297) [ClassicSimilarity], result of:
          0.029653627 = score(doc=3297,freq=2.0), product of:
            0.15925534 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.047248192 = queryNorm
            0.18620178 = fieldWeight in 3297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.

Authors

Types

  • a 33
  • m 17
  • el 10
  • s 10
  • x 2
  • More… Less…

Subjects