Search (113 results, page 1 of 6)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × year_i:[2010 TO 2020}
  1. Marcondes, C.H.: Representing and organizing scientific knowledge in biomedical articles with Semantic Web technologies (2017) 0.01
    0.011154163 = product of:
      0.06320692 = sum of:
        0.018970713 = weight(_text_:und in 3503) [ClassicSimilarity], result of:
          0.018970713 = score(doc=3503,freq=8.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.34282678 = fieldWeight in 3503, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3503)
        0.03918348 = weight(_text_:informationswissenschaft in 3503) [ClassicSimilarity], result of:
          0.03918348 = score(doc=3503,freq=2.0), product of:
            0.11246919 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.024967048 = queryNorm
            0.348393 = fieldWeight in 3503, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3503)
        0.005052725 = weight(_text_:in in 3503) [ClassicSimilarity], result of:
          0.005052725 = score(doc=3503,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.14877784 = fieldWeight in 3503, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3503)
      0.1764706 = coord(3/17)
    
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  2. Wenige, L.: ¬The application of linked data resources for library recommender systems (2017) 0.01
    0.010893001 = product of:
      0.061727006 = sum of:
        0.018970713 = weight(_text_:und in 3500) [ClassicSimilarity], result of:
          0.018970713 = score(doc=3500,freq=8.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.34282678 = fieldWeight in 3500, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3500)
        0.03918348 = weight(_text_:informationswissenschaft in 3500) [ClassicSimilarity], result of:
          0.03918348 = score(doc=3500,freq=2.0), product of:
            0.11246919 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.024967048 = queryNorm
            0.348393 = fieldWeight in 3500, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3500)
        0.0035728158 = weight(_text_:in in 3500) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=3500,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 3500, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3500)
      0.1764706 = coord(3/17)
    
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  3. Kushwaha, N.; Vyas, O.P.: SemMovieRec : extraction of semantic features of DBpedia for recommender system (2017) 0.01
    0.010893001 = product of:
      0.061727006 = sum of:
        0.018970713 = weight(_text_:und in 3501) [ClassicSimilarity], result of:
          0.018970713 = score(doc=3501,freq=8.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.34282678 = fieldWeight in 3501, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
        0.03918348 = weight(_text_:informationswissenschaft in 3501) [ClassicSimilarity], result of:
          0.03918348 = score(doc=3501,freq=2.0), product of:
            0.11246919 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.024967048 = queryNorm
            0.348393 = fieldWeight in 3501, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
        0.0035728158 = weight(_text_:in in 3501) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=3501,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 3501, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
      0.1764706 = coord(3/17)
    
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  4. De Luca, E.W.: Using multilingual lexical resources for extending the linked data cloud (2017) 0.01
    0.010893001 = product of:
      0.061727006 = sum of:
        0.018970713 = weight(_text_:und in 3506) [ClassicSimilarity], result of:
          0.018970713 = score(doc=3506,freq=8.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.34282678 = fieldWeight in 3506, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3506)
        0.03918348 = weight(_text_:informationswissenschaft in 3506) [ClassicSimilarity], result of:
          0.03918348 = score(doc=3506,freq=2.0), product of:
            0.11246919 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.024967048 = queryNorm
            0.348393 = fieldWeight in 3506, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3506)
        0.0035728158 = weight(_text_:in in 3506) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=3506,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 3506, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3506)
      0.1764706 = coord(3/17)
    
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  5. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.01
    0.010334509 = product of:
      0.05856222 = sum of:
        0.036148407 = weight(_text_:buch in 4515) [ClassicSimilarity], result of:
          0.036148407 = score(doc=4515,freq=6.0), product of:
            0.11608105 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.024967048 = queryNorm
            0.3114066 = fieldWeight in 4515, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.015729684 = weight(_text_:und in 4515) [ClassicSimilarity], result of:
          0.015729684 = score(doc=4515,freq=22.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.28425696 = fieldWeight in 4515, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.0066841263 = weight(_text_:in in 4515) [ClassicSimilarity], result of:
          0.0066841263 = score(doc=4515,freq=28.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.19681457 = fieldWeight in 4515, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.1764706 = coord(3/17)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
  6. Fensel, A.: Towards semantic APIs for research data services (2017) 0.00
    0.0039422107 = product of:
      0.033508793 = sum of:
        0.028456066 = weight(_text_:und in 4439) [ClassicSimilarity], result of:
          0.028456066 = score(doc=4439,freq=18.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.51424015 = fieldWeight in 4439, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4439)
        0.005052725 = weight(_text_:in in 4439) [ClassicSimilarity], result of:
          0.005052725 = score(doc=4439,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.14877784 = fieldWeight in 4439, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4439)
      0.11764706 = coord(2/17)
    
    Abstract
    Die schnelle Entwicklung der Internet- und Web-Technologie verändert den Stand der Technik in der Kommunikation von Wissen oder Forschungsergebnissen. Insbesondere werden semantische Technologien, verknüpfte und offene Daten zu entscheidenden Faktoren für einen erfolgreichen und effizienten Forschungsfortschritt. Zuerst definiere ich den Research Data Service (RDS) und diskutiere typische aktuelle und mögliche zukünftige Nutzungsszenarien mit RDS. Darüber hinaus bespreche ich den Stand der Technik in den Bereichen semantische Dienstleistung und Datenanmerkung und API-Konstruktion sowie infrastrukturelle Lösungen, die für die RDS-Realisierung anwendbar sind. Zum Schluss werden noch innovative Methoden der Online-Verbreitung, Förderung und effizienten Kommunikation der Forschung diskutiert.
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 70(2017) H.2, S.157-169
  7. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.00
    0.0037660217 = product of:
      0.02134079 = sum of:
        0.008130305 = weight(_text_:und in 3197) [ClassicSimilarity], result of:
          0.008130305 = score(doc=3197,freq=2.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.14692576 = fieldWeight in 3197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.0030624135 = weight(_text_:in in 3197) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=3197,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 3197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.010148071 = product of:
          0.020296142 = sum of:
            0.020296142 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.020296142 = score(doc=3197,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.1764706 = coord(3/17)
    
    Abstract
    Indexing consists of both novel and more traditional techniques. Cutting-edge indexing techniques, such as automatic indexing, ontologies, and topic maps, were developed independently of older techniques such as thesauri, but it is now recognized that these older methods also hold expertise. Indexing describes various traditional and novel indexing techniques, giving information professionals and students of library and information sciences a broad and comprehensible introduction to indexing. This title consists of twelve chapters: an Introduction to subject readings and theasauri; Automatic indexing versus manual indexing; Techniques applied in automatic indexing of text material; Automatic indexing of images; The black art of indexing moving images; Automatic indexing of music; Taxonomies and ontologies; Metadata formats and indexing; Tagging; Topic maps; Indexing the web; and The Semantic Web.
    Date
    24. 8.2016 14:03:22
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  8. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.00
    0.0028390156 = product of:
      0.024131631 = sum of:
        0.007218178 = weight(_text_:in in 2090) [ClassicSimilarity], result of:
          0.007218178 = score(doc=2090,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.21253976 = fieldWeight in 2090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=2090)
        0.016913453 = product of:
          0.033826906 = sum of:
            0.033826906 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.033826906 = score(doc=2090,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  9. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.00
    0.002233535 = product of:
      0.018985048 = sum of:
        0.0071456316 = weight(_text_:in in 3283) [ClassicSimilarity], result of:
          0.0071456316 = score(doc=3283,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.21040362 = fieldWeight in 3283, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.011839416 = product of:
          0.023678832 = sum of:
            0.023678832 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.023678832 = score(doc=3283,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
    Series
    Communications in computer and information science; 672
  10. Neubauer, G.: Visualization of typed links in linked data (2017) 0.00
    0.0021142026 = product of:
      0.017970722 = sum of:
        0.013550509 = weight(_text_:und in 3912) [ClassicSimilarity], result of:
          0.013550509 = score(doc=3912,freq=8.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.24487628 = fieldWeight in 3912, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
        0.004420214 = weight(_text_:in in 3912) [ClassicSimilarity], result of:
          0.004420214 = score(doc=3912,freq=6.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.1301535 = fieldWeight in 3912, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
      0.11764706 = coord(2/17)
    
    Abstract
    Das Themengebiet der Arbeit behandelt Visualisierungen von typisierten Links in Linked Data. Die wissenschaftlichen Gebiete, die im Allgemeinen den Inhalt des Beitrags abgrenzen, sind das Semantic Web, das Web of Data und Informationsvisualisierung. Das Semantic Web, das von Tim Berners Lee 2001 erfunden wurde, stellt eine Erweiterung zum World Wide Web (Web 2.0) dar. Aktuelle Forschungen beziehen sich auf die Verknüpfbarkeit von Informationen im World Wide Web. Um es zu ermöglichen, solche Verbindungen wahrnehmen und verarbeiten zu können sind Visualisierungen die wichtigsten Anforderungen als Hauptteil der Datenverarbeitung. Im Zusammenhang mit dem Sematic Web werden Repräsentationen von zusammenhängenden Informationen anhand von Graphen gehandhabt. Der Grund des Entstehens dieser Arbeit ist in erster Linie die Beschreibung der Gestaltung von Linked Data-Visualisierungskonzepten, deren Prinzipien im Rahmen einer theoretischen Annäherung eingeführt werden. Anhand des Kontexts führt eine schrittweise Erweiterung der Informationen mit dem Ziel, praktische Richtlinien anzubieten, zur Vernetzung dieser ausgearbeiteten Gestaltungsrichtlinien. Indem die Entwürfe zweier alternativer Visualisierungen einer standardisierten Webapplikation beschrieben werden, die Linked Data als Netzwerk visualisiert, konnte ein Test durchgeführt werden, der deren Kompatibilität zum Inhalt hatte. Der praktische Teil behandelt daher die Designphase, die Resultate, und zukünftige Anforderungen des Projektes, die durch die Testung ausgearbeitet wurden.
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 70(2017) H.2, S.179-199
  11. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.0019144587 = product of:
      0.016272899 = sum of:
        0.006124827 = weight(_text_:in in 4649) [ClassicSimilarity], result of:
          0.006124827 = score(doc=4649,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18034597 = fieldWeight in 4649, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.010148071 = product of:
          0.020296142 = sum of:
            0.020296142 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.020296142 = score(doc=4649,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  12. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.00
    0.0019144587 = product of:
      0.016272899 = sum of:
        0.006124827 = weight(_text_:in in 662) [ClassicSimilarity], result of:
          0.006124827 = score(doc=662,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18034597 = fieldWeight in 662, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=662)
        0.010148071 = product of:
          0.020296142 = sum of:
            0.020296142 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
              0.020296142 = score(doc=662,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.23214069 = fieldWeight in 662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    The concept of Linked Data has made its entrance in the cultural heritage sector due to its potential use for the integration of heterogeneous collections and deriving additional value out of existing metadata. However, practitioners and researchers alike need a better understanding of what outcome they can reasonably expect of the reconciliation process between their local metadata and established controlled vocabularies which are already a part of the Linked Data cloud. This paper offers an in-depth analysis of how a locally developed vocabulary can be successfully reconciled with the Library of Congress Subject Headings (LCSH) and the Arts and Architecture Thesaurus (AAT) through the help of a general-purpose tool for interactive data transformation (OpenRefine). Issues negatively affecting the reconciliation process are identified and solutions are proposed in order to derive maximum value from existing metadata and controlled vocabularies in an automated manner.
    Date
    22. 3.2013 19:29:20
  13. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.00
    0.0019144587 = product of:
      0.016272899 = sum of:
        0.006124827 = weight(_text_:in in 2024) [ClassicSimilarity], result of:
          0.006124827 = score(doc=2024,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18034597 = fieldWeight in 2024, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2024)
        0.010148071 = product of:
          0.020296142 = sum of:
            0.020296142 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.020296142 = score(doc=2024,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  14. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    0.0017303355 = product of:
      0.014707852 = sum of:
        0.0062511256 = weight(_text_:in in 4553) [ClassicSimilarity], result of:
          0.0062511256 = score(doc=4553,freq=12.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18406484 = fieldWeight in 4553, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.008456727 = product of:
          0.016913453 = sum of:
            0.016913453 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.016913453 = score(doc=4553,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  15. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.00
    0.0015914403 = product of:
      0.0135272425 = sum of:
        0.0067752544 = weight(_text_:und in 438) [ClassicSimilarity], result of:
          0.0067752544 = score(doc=438,freq=2.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.12243814 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.006751988 = weight(_text_:in in 438) [ClassicSimilarity], result of:
          0.006751988 = score(doc=438,freq=14.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.19881277 = fieldWeight in 438, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.11764706 = coord(2/17)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
    Content
    Vgl.: http://swse.deri.org/ und http://swse.org/.
  16. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.00
    0.0014314085 = product of:
      0.012166971 = sum of:
        0.0054015904 = weight(_text_:in in 1626) [ClassicSimilarity], result of:
          0.0054015904 = score(doc=1626,freq=14.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15905021 = fieldWeight in 1626, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.006765381 = product of:
          0.013530762 = sum of:
            0.013530762 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.013530762 = score(doc=1626,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.00
    0.001405241 = product of:
      0.011944548 = sum of:
        0.0035728158 = weight(_text_:in in 1155) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=1155,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 1155, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1155)
        0.008371732 = product of:
          0.016743464 = sum of:
            0.016743464 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
              0.016743464 = score(doc=1155,freq=4.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.19150631 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    Metadata and semantics are integral to any information system and significant to the sphere of Web data. Research focusing on metadata and semantics is crucial for advancing our understanding and knowledge of metadata; and, more profoundly for being able to effectively discover, use, archive, and repurpose information. In response to this need, researchers are actively examining methods for generating, reusing, and interchanging metadata. Integrated with these developments is research on the application of computational methods, linked data, and data analytics. A growing body of work also targets conceptual and theoretical designs providing foundational frameworks for metadata and semantic applications. There is no doubt that metadata weaves its way into nearly every aspect of our information ecosystem, and there is great motivation for advancing the current state of metadata and semantics. To this end, it is vital that scholars and practitioners convene and share their work.
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    All the papers underwent a thorough and rigorous peer-review process. The review and selection this year was highly competitive and only papers containing significant research results, innovative methods, or novel and best practices were accepted for publication. Only 29 of 89 submissions were accepted as full papers, representing 32.5% of the total number of submissions. Additional contributions covering noteworthy and important results in special tracks or project reports were accepted, totaling 42 accepted contributions. This year's conference included two outstanding keynote speakers. Dr. Stefan Gradmann, a professor arts department of KU Leuven (Belgium) and director of university library, addressed semantic research drawing from his work with Europeana. The title of his presentation was, "Towards a Semantic Research Library: Digital Humanities Research, Europeana and the Linked Data Paradigm". Dr. Michail Salampasis, associate professor from our conference host institution, the Department of Informatics of the Alexander TEI of Thessaloniki, presented new potential, intersecting search and linked data. The title of his talk was, "Rethinking the Search Experience: What Could Professional Search Systems Do Better?"
    Date
    17.12.2013 12:51:22
    Series
    Communications in computer and information science; vol.390
  18. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.00
    0.0013842684 = product of:
      0.011766281 = sum of:
        0.0050009005 = weight(_text_:in in 1634) [ClassicSimilarity], result of:
          0.0050009005 = score(doc=1634,freq=12.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.14725187 = fieldWeight in 1634, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.006765381 = product of:
          0.013530762 = sum of:
            0.013530762 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.013530762 = score(doc=1634,freq=2.0), product of:
                0.08743035 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024967048 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.11764706 = coord(2/17)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  19. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.00
    0.0013171139 = product of:
      0.011195468 = sum of:
        0.0067752544 = weight(_text_:und in 5997) [ClassicSimilarity], result of:
          0.0067752544 = score(doc=5997,freq=2.0), product of:
            0.055336144 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.024967048 = queryNorm
            0.12243814 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.004420214 = weight(_text_:in in 5997) [ClassicSimilarity], result of:
          0.004420214 = score(doc=5997,freq=6.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.1301535 = fieldWeight in 5997, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
      0.11764706 = coord(2/17)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  20. LeBoeuf, P.: ¬A strange model named FRBRoo (2012) 0.00
    6.2403013E-4 = product of:
      0.010608512 = sum of:
        0.010608512 = weight(_text_:in in 1904) [ClassicSimilarity], result of:
          0.010608512 = score(doc=1904,freq=24.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.3123684 = fieldWeight in 1904, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1904)
      0.05882353 = coord(1/17)
    
    Abstract
    Libraries and museums developed rules for the description of their collections prior to formalizing the underlying conceptualization reflected in such rules. That formalizing process took place in the 1990s and resulted in two independent conceptual models: FRBR for bibliographic information (published in 1998), and CIDOC CRM for museum information (developed from 1996 on, and issued as ISO standard 21127 in 2006). An international working group was formed in 2003 with the purpose of harmonizing these two models. The resulting model, FRBROO, was published in 2009. It is an extension to CIDOC CRM, using the formalism in which the former is written. It adds to FRBR the dynamic aspects of CIDOC CRM, and a number of refinements (e.g. in the definitions of Work and Manifestation). Some modifications were made in CIDOC CRM as well. FRBROO was developed with Semantic Web technologies in mind, and lends itself well to the Linked Data environment; but will it be used in that context?

Types

  • a 68
  • m 33
  • el 23
  • s 11
  • x 3
  • r 1
  • More… Less…

Subjects