Search (6 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Universale Facettenklassifikationen"
  • × type_ss:"el"
  1. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.00
    0.0017118829 = product of:
      0.023966359 = sum of:
        0.023966359 = weight(_text_:retrieval in 3773) [ClassicSimilarity], result of:
          0.023966359 = score(doc=3773,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.26736724 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3773)
      0.071428575 = coord(1/14)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  2. Gnoli, C.: "Classic"vs. "freely" faceted classification (2007) 0.00
    0.0014944416 = product of:
      0.020922182 = sum of:
        0.020922182 = weight(_text_:web in 715) [ClassicSimilarity], result of:
          0.020922182 = score(doc=715,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 715, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=715)
      0.071428575 = coord(1/14)
    
    Abstract
    Claudio Gnoli of the University of Pavia in Italy and Chair of ISKO Italy, explored the relative merits of classic 'faceted classification' (FC) and 'freely faceted classification' (FFC). In classic FC, the facets (and their relationships) which might be combined to express a compound subject, are restricted to those prescribed as inherent in the subject area. FC is therefore largely bounded by and restricted to a specific subject area. At the other extreme, free classification (as in the Web or folksonomies) allows the combination of values from multiple, disparate domains where the relationships among the elements are often indeterminate, and the semantics obscure. Claudio described how punched cards were an early example of free classification, and cited the coordination of dogs : postmen : bites as one where the absence of defined relationships made the semantics ambiguous
  3. Sukhmaneva, E.G.: Modern development of faceted classification 0.00
    5.7655195E-4 = product of:
      0.008071727 = sum of:
        0.008071727 = weight(_text_:information in 3132) [ClassicSimilarity], result of:
          0.008071727 = score(doc=3132,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 3132, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3132)
      0.071428575 = coord(1/14)
    
    Content
    English version of a Russion paper first published in the series Sciebtific and Technical Information (Nauchno-Tekhnicheskaya Informatsya), Series 2 No.11.
  4. Sukhmaneva, E.G.: ¬The problems of notation and faceted classification 0.00
    5.7655195E-4 = product of:
      0.008071727 = sum of:
        0.008071727 = weight(_text_:information in 3300) [ClassicSimilarity], result of:
          0.008071727 = score(doc=3300,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 3300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3300)
      0.071428575 = coord(1/14)
    
    Content
    English version of a Russion paper first published in the series Sciebtific and Technical Information (Nauchno-Tekhnicheskaya Informatsya), Series 2 No.11.
  5. Dousa, T.: Everything Old is New Again : Perspectivism and Polyhierarchy in Julius O. Kaiser's Theory of Systematic Indexing (2007) 0.00
    5.0960475E-4 = product of:
      0.0071344664 = sum of:
        0.0071344664 = weight(_text_:information in 4835) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=4835,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 4835, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4835)
      0.071428575 = coord(1/14)
    
    Abstract
    In the early years of the 20th century, Julius Otto Kaiser (1868-1927), a special librarian and indexer of technical literature, developed a method of knowledge organization (KO) known as systematic indexing. Certain elements of the method-its stipulation that all indexing terms be divided into fundamental categories "concretes", "countries", and "processes", which are then to be synthesized into indexing "statements" formulated according to strict rules of citation order-have long been recognized as precursors to key principles of the theory of faceted classification. However, other, less well-known elements of the method may prove no less interesting to practitioners of KO. In particular, two aspects of systematic indexing seem to prefigure current trends in KO: (1) a perspectivist outlook that rejects universal classifications in favor of information organization systems customized to reflect local needs and (2) the incorporation of index terms extracted from source documents into a polyhierarchical taxonomical structure. Kaiser's perspectivism anticipates postmodern theories of KO, while his principled use of polyhierarchy to organize terms derived from the language of source documents provides a potentially fruitful model that can inform current discussions about harvesting natural-language terms, such as tags, and incorporating them into a flexibly structured controlled vocabulary.
    Source
    Proceedings 18th Workshop of the American Society for Information Science and Technology Special Interest Group in Classification Research, Milwaukee, Wisconsin. Ed.: Lussky, Joan
  6. Frické, M.: Logical division (2016) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3183) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3183,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3183, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
      0.071428575 = coord(1/14)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.