Search (173 results, page 1 of 9)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.19
    0.19486147 = product of:
      0.38972294 = sum of:
        0.05567471 = product of:
          0.16702412 = sum of:
            0.16702412 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.16702412 = score(doc=400,freq=2.0), product of:
                0.2971864 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03505379 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.16702412 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.16702412 = score(doc=400,freq=2.0), product of:
            0.2971864 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03505379 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.16702412 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.16702412 = score(doc=400,freq=2.0), product of:
            0.2971864 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03505379 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.5 = coord(3/6)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.013747579 = product of:
      0.041242737 = sum of:
        0.028577924 = product of:
          0.057155848 = sum of:
            0.057155848 = weight(_text_:web in 3376) [ClassicSimilarity], result of:
              0.057155848 = score(doc=3376,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.49962097 = fieldWeight in 3376, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
        0.012664813 = product of:
          0.037994437 = sum of:
            0.037994437 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.037994437 = score(doc=3376,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This chapter presents ontologies and their role in the creation of the Semantic Web. Ontologies hold special interest, because they are very closely related to the way we understand the world. They provide common understanding, the very first step to successful communication. In following sections, we will present ontologies, how they are created and used. We will describe available tools for specifying and working with ontologies.
    Date
    31. 7.2010 16:58:22
    Theme
    Semantic Web
  3. Wielinga, B.; Wielemaker, J.; Schreiber, G.; Assem, M. van: Methods for porting resources to the Semantic Web (2004) 0.01
    0.013298765 = product of:
      0.039896294 = sum of:
        0.030311465 = product of:
          0.06062293 = sum of:
            0.06062293 = weight(_text_:web in 4640) [ClassicSimilarity], result of:
              0.06062293 = score(doc=4640,freq=12.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5299281 = fieldWeight in 4640, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4640)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 4640) [ClassicSimilarity], result of:
              0.028754493 = score(doc=4640,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 4640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4640)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Ontologies will play a central role in the development of the Semantic Web. It is unrealistic to assume that such ontologies will be developed from scratch. Rather, we assume that existing resources such as thesauri and lexical data bases will be reused in the development of ontologies for the Semantic Web. In this paper we describe a method for converting existing source material to a representation that is compatible with Semantic Web languages such as RDF(S) and OWL. The method is illustrated with three case studies: converting Wordnet, AAT and MeSH to RDF(S) and OWL.
    Date
    29. 7.2011 14:44:56
    Source
    Proceedings of the First European Semantic Web Symposium (ESWS2004), Eds.: C. Bussler, J. Davies, D. Fensel and R. Studer. 2004. S.299-311
    Theme
    Semantic Web
  4. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.011415939 = product of:
      0.034247816 = sum of:
        0.024749206 = product of:
          0.049498413 = sum of:
            0.049498413 = weight(_text_:web in 2418) [ClassicSimilarity], result of:
              0.049498413 = score(doc=2418,freq=8.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.43268442 = fieldWeight in 2418, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.028495826 = score(doc=2418,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Theme
    Semantic Web
  5. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.01
    0.010351777 = product of:
      0.031055331 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 2738) [ClassicSimilarity], result of:
              0.035000663 = score(doc=2738,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
        0.013555 = product of:
          0.040664997 = sum of:
            0.040664997 = weight(_text_:29 in 2738) [ClassicSimilarity], result of:
              0.040664997 = score(doc=2738,freq=4.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3297832 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
    Content
    Beitrag in einem Themenheft "Soft Approaches to IA on the Web". Vgl.: doi:10.1016/j.ipm.2011.07.002.
    Date
    29. 1.2016 18:29:51
  6. McGuinness, D.L.: Ontologies come of age (2003) 0.01
    0.010348691 = product of:
      0.031046072 = sum of:
        0.023058712 = product of:
          0.046117425 = sum of:
            0.046117425 = weight(_text_:web in 3084) [ClassicSimilarity], result of:
              0.046117425 = score(doc=3084,freq=10.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.40312994 = fieldWeight in 3084, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3084)
          0.5 = coord(1/2)
        0.00798736 = product of:
          0.023962079 = sum of:
            0.023962079 = weight(_text_:29 in 3084) [ClassicSimilarity], result of:
              0.023962079 = score(doc=3084,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 3084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3084)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
    Date
    29. 3.1996 18:16:49
    Source
    Spinning the Semantic Web: bringing the World Wide Web to its full potential. Eds.: D. Fensel u.a
    Theme
    Semantic Web
  7. Marcondes, C.H.; Costa, L.C da.: ¬A model to represent and process scientific knowledge in biomedical articles with semantic Web technologies (2016) 0.01
    0.009513283 = product of:
      0.028539848 = sum of:
        0.02062434 = product of:
          0.04124868 = sum of:
            0.04124868 = weight(_text_:web in 2829) [ClassicSimilarity], result of:
              0.04124868 = score(doc=2829,freq=8.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.36057037 = fieldWeight in 2829, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2829)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 2829) [ClassicSimilarity], result of:
              0.023746524 = score(doc=2829,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 2829, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2829)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Knowledge organization faces the challenge of managing the amount of knowledge available on the Web. Published literature in biomedical sciences is a huge source of knowledge, which can only efficiently be managed through automatic methods. The conventional channel for reporting scientific results is Web electronic publishing. Despite its advances, scientific articles are still published in print formats such as portable document format (PDF). Semantic Web and Linked Data technologies provides new opportunities for communicating, sharing, and integrating scientific knowledge that can overcome the limitations of the current print format. Here is proposed a semantic model of scholarly electronic articles in biomedical sciences that can overcome the limitations of traditional flat records formats. Scientific knowledge consists of claims made throughout article texts, especially when semantic elements such as questions, hypotheses and conclusions are stated. These elements, although having different roles, express relationships between phenomena. Once such knowledge units are extracted and represented with technologies such as RDF (Resource Description Framework) and linked data, they may be integrated in reasoning chains. Thereby, the results of scientific research can be published and shared in structured formats, enabling crawling by software agents, semantic retrieval, knowledge reuse, validation of scientific results, and identification of traces of scientific discoveries.
    Date
    12. 3.2016 13:17:22
  8. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.01
    0.009028388 = product of:
      0.027085163 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 4708) [ClassicSimilarity], result of:
              0.035000663 = score(doc=4708,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 4708, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4708)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 4708) [ClassicSimilarity], result of:
              0.028754493 = score(doc=4708,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 4708, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4708)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
  9. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.01
    0.008999648 = product of:
      0.02699894 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 3387) [ClassicSimilarity], result of:
              0.035000663 = score(doc=3387,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 3387, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.028495826 = score(doc=3387,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  10. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.01
    0.008865844 = product of:
      0.026597532 = sum of:
        0.020207644 = product of:
          0.040415287 = sum of:
            0.040415287 = weight(_text_:web in 4639) [ClassicSimilarity], result of:
              0.040415287 = score(doc=4639,freq=12.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.35328537 = fieldWeight in 4639, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4639)
          0.5 = coord(1/2)
        0.0063898875 = product of:
          0.019169662 = sum of:
            0.019169662 = weight(_text_:29 in 4639) [ClassicSimilarity], result of:
              0.019169662 = score(doc=4639,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.15546128 = fieldWeight in 4639, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4639)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This thesis focuses on conversion of vocabularies for representation and integration of collections on the Semantic Web. A secondary focus is how to represent metadata schemas (RDF Schemas representing metadata element sets) such that they interoperate with vocabularies. The primary domain in which we operate is that of cultural heritage collections. The background worldview in which a solution is sought is that of the Semantic Web research paradigmwith its associated theories, methods, tools and use cases. In other words, we assume the SemanticWeb is in principle able to provide the context to realize interoperable collections. Interoperability is dependent on the interplay between representations and the applications that use them. We mean applications in the widest sense, such as "search" and "annotation". These applications or tasks are often present in software applications, such as the E-Culture application. It is therefore necessary that applications requirements on the vocabulary representation are met. This leads us to formulate the following problem statement: HOW CAN EXISTING VOCABULARIES BE MADE AVAILABLE TO SEMANTIC WEB APPLICATIONS?
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.
    Date
    29. 7.2011 14:44:56
  11. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.01
    0.008592237 = product of:
      0.02577671 = sum of:
        0.017861202 = product of:
          0.035722405 = sum of:
            0.035722405 = weight(_text_:web in 1434) [ClassicSimilarity], result of:
              0.035722405 = score(doc=1434,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3122631 = fieldWeight in 1434, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1434)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
              0.023746524 = score(doc=1434,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 1434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1434)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.008592237 = product of:
      0.02577671 = sum of:
        0.017861202 = product of:
          0.035722405 = sum of:
            0.035722405 = weight(_text_:web in 4553) [ClassicSimilarity], result of:
              0.035722405 = score(doc=4553,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3122631 = fieldWeight in 4553, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.023746524 = score(doc=4553,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Theme
    Semantic Web
  13. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.01
    0.00853978 = product of:
      0.02561934 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 4644) [ClassicSimilarity], result of:
              0.028874075 = score(doc=4644,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 4644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.5 = coord(1/2)
        0.011182303 = product of:
          0.033546906 = sum of:
            0.033546906 = weight(_text_:29 in 4644) [ClassicSimilarity], result of:
              0.033546906 = score(doc=4644,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 4644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Date
    29. 7.2011 14:44:56
    Source
    Proceedings of the 3rd International Semantic Web Conference (ISWC'04). Eds. D. Plexousakis and F. van Harmelen
  14. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.01
    0.00853978 = product of:
      0.02561934 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 1565) [ClassicSimilarity], result of:
              0.028874075 = score(doc=1565,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 1565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1565)
          0.5 = coord(1/2)
        0.011182303 = product of:
          0.033546906 = sum of:
            0.033546906 = weight(_text_:29 in 1565) [ClassicSimilarity], result of:
              0.033546906 = score(doc=1565,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 1565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1565)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.
    Source
    Metadata and semantics research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Eds.: S. Closs et al
  15. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.01
    0.00853978 = product of:
      0.02561934 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
              0.028874075 = score(doc=4471,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.5 = coord(1/2)
        0.011182303 = product of:
          0.033546906 = sum of:
            0.033546906 = weight(_text_:29 in 4471) [ClassicSimilarity], result of:
              0.033546906 = score(doc=4471,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
  16. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.01
    0.00850625 = product of:
      0.025518749 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 3694) [ClassicSimilarity], result of:
              0.028874075 = score(doc=3694,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
        0.01108171 = product of:
          0.03324513 = sum of:
            0.03324513 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.03324513 = score(doc=3694,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    A method to develop a prototype domain ontology has been described. The domain selected for the study is Accelerator Driven Systems. This is a multidisciplinary and interdisciplinary subject comprising Nuclear Physics, Nuclear and Reactor Engineering, Reactor Fuels and Radioactive Waste Management. Since Accelerator Driven Systems is a vast topic, select areas in it were singled out for the study. Both qualitative and quantitative methods such as Content analysis, Facet analysis and Clustering were used, to develop the web-based model.
    Date
    22. 7.2010 19:41:16
  17. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.01
    0.00850625 = product of:
      0.025518749 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 1437) [ClassicSimilarity], result of:
              0.028874075 = score(doc=1437,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
        0.01108171 = product of:
          0.03324513 = sum of:
            0.03324513 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.03324513 = score(doc=1437,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper describes to construct faceted ontologies for domain modeling. Building upon the faceted theory of S.R. Ranganathan (1967), the paper intends to address the faceted classification approach applied to build domain ontologies. As classificatory ontologies are employed to represent the relationships of entities and objects on the web, the faceted approach helps to analyze domain representation in an effective way for modeling. Based on this perspective, an ontology of the music domain has been analyzed that would serve as a case study.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  18. Assem, M. van; Rijgersberg, H.; Wigham, M.; Top, J.: Converting and annotating quantitative data tables (2010) 0.01
    0.007523657 = product of:
      0.02257097 = sum of:
        0.01458361 = product of:
          0.02916722 = sum of:
            0.02916722 = weight(_text_:web in 4705) [ClassicSimilarity], result of:
              0.02916722 = score(doc=4705,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25496176 = fieldWeight in 4705, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4705)
          0.5 = coord(1/2)
        0.00798736 = product of:
          0.023962079 = sum of:
            0.023962079 = weight(_text_:29 in 4705) [ClassicSimilarity], result of:
              0.023962079 = score(doc=4705,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 4705, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4705)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Date
    29. 7.2011 14:44:56
    Source
    The Semantic Web - ISWC 2010. 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. Eds.: Peter F. Patel-Schneider et al
  19. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.01
    0.007291071 = product of:
      0.021873213 = sum of:
        0.012374603 = product of:
          0.024749206 = sum of:
            0.024749206 = weight(_text_:web in 2024) [ClassicSimilarity], result of:
              0.024749206 = score(doc=2024,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.21634221 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.028495826 = score(doc=2024,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
    Theme
    Semantic Web
  20. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.01
    0.0072185183 = product of:
      0.043311108 = sum of:
        0.043311108 = product of:
          0.086622216 = sum of:
            0.086622216 = weight(_text_:web in 3939) [ClassicSimilarity], result of:
              0.086622216 = score(doc=3939,freq=18.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.75719774 = fieldWeight in 3939, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3939)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web

Authors

Years

Types

  • el 35
  • x 1
  • More… Less…