Search (7 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"x"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.02
    0.018007545 = product of:
      0.054022633 = sum of:
        0.054022633 = product of:
          0.16206789 = sum of:
            0.16206789 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16206789 = score(doc=701,freq=2.0), product of:
                0.43255165 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.051020417 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.02
    0.018007545 = product of:
      0.054022633 = sum of:
        0.054022633 = product of:
          0.16206789 = sum of:
            0.16206789 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16206789 = score(doc=5820,freq=2.0), product of:
                0.43255165 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.051020417 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Noy, N.F.: Knowledge representation for intelligent information retrieval in experimental sciences (1997) 0.01
    0.008709343 = product of:
      0.026128028 = sum of:
        0.026128028 = product of:
          0.052256055 = sum of:
            0.052256055 = weight(_text_:processing in 694) [ClassicSimilarity], result of:
              0.052256055 = score(doc=694,freq=4.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.2530092 = fieldWeight in 694, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.03125 = fieldNorm(doc=694)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    More and more information is available on-line every day. The greater the amount of on-line information, the greater the demand for tools that process and disseminate this information. Processing electronic information in the form of text and answering users' queries about that information intelligently is one of the great challenges in natural language processing and information retrieval. The research presented in this talk is centered on the latter of these two tasks: intelligent information retrieval. In order for information to be retrieved, it first needs to be formalized in a database or knowledge base. The ontology for this formalization and assumptions it is based on are crucial to successful intelligent information retrieval. We have concentrated our effort on developing an ontology for representing knowledge in the domains of experimental sciences, molecular biology in particular. We show that existing ontological models cannot be readily applied to represent this domain adequately. For example, the fundamental notion of ontology design that every "real" object is defined as an instance of a category seems incompatible with the universe where objects can change their category as a result of experimental procedures. Another important problem is representing complex structures such as DNA, mixtures, populations of molecules, etc., that are very common in molecular biology. We present extensions that need to be made to an ontology to cover these issues: the representation of transformations that change the structure and/or category of their participants, and the component relations and spatial structures of complex objects. We demonstrate examples of how the proposed representations can be used to improve the quality and completeness of answers to user queries; discuss techniques for evaluating ontologies and show a prototype of an Information Retrieval System that we developed.
  4. Castellanos Ardila, J.P.: Investigation of an OSLC-domain targeting ISO 26262 : focus on the left side of the software V-model (2016) 0.01
    0.007514938 = product of:
      0.022544812 = sum of:
        0.022544812 = weight(_text_:data in 5819) [ClassicSimilarity], result of:
          0.022544812 = score(doc=5819,freq=2.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.1397442 = fieldWeight in 5819, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=5819)
      0.33333334 = coord(1/3)
    
    Abstract
    Industries have adopted a standardized set of practices for developing their products. In the automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard that specifies a set of requirements and recommendations for developing automotive safety-critical systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard must be included in the development process of a vehicle. Besides, a safety case that shows that the system is acceptably safe has to be provided. The provision of a safety case implies the execution of a precise documentation process. This process makes sure that the work products are available and traceable. Further, the documentation management is defined in the standard as a mandatory activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard and the maturing stack of semantic web technologies represent a promising integration platform for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for requirements, architecture, development management, among others, are expected to interact and shared data with the help of domains specifications created in OSLC. This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related information, where fragments of safety information can be generated. The steps carried out during the elaboration of this master thesis consist in the identification, representation, and shaping of the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the standard: Software unit design and implementation. Regardless of the use of a restricted portion of the standard during the execution of this thesis, the findings can be extended to other parts, and the conclusions can be generalize. This master thesis is considered one of the first steps towards the provision of an OSLC-based and ISO 26262-compliant methodological approach for representing and shaping the work products resulting from the execution of the safety lifecycle, documentation required in the conformation of an ISO-compliant safety case.
  5. Sebastian, Y.: Literature-based discovery by learning heterogeneous bibliographic information networks (2017) 0.01
    0.007514938 = product of:
      0.022544812 = sum of:
        0.022544812 = weight(_text_:data in 535) [ClassicSimilarity], result of:
          0.022544812 = score(doc=535,freq=2.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.1397442 = fieldWeight in 535, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=535)
      0.33333334 = coord(1/3)
    
    Abstract
    Literature-based discovery (LBD) research aims at finding effective computational methods for predicting previously unknown connections between clusters of research papers from disparate research areas. Existing methods encompass two general approaches. The first approach searches for these unknown connections by examining the textual contents of research papers. In addition to the existing textual features, the second approach incorporates structural features of scientific literatures, such as citation structures. These approaches, however, have not considered research papers' latent bibliographic metadata structures as important features that can be used for predicting previously unknown relationships between them. This thesis investigates a new graph-based LBD method that exploits the latent bibliographic metadata connections between pairs of research papers. The heterogeneous bibliographic information network is proposed as an efficient graph-based data structure for modeling the complex relationships between these metadata. In contrast to previous approaches, this method seamlessly combines textual and citation information in the form of pathbased metadata features for predicting future co-citation links between research papers from disparate research fields. The results reported in this thesis provide evidence that the method is effective for reconstructing the historical literature-based discovery hypotheses. This thesis also investigates the effects of semantic modeling and topic modeling on the performance of the proposed method. For semantic modeling, a general-purpose word sense disambiguation technique is proposed to reduce the lexical ambiguity in the title and abstract of research papers. The experimental results suggest that the reduced lexical ambiguity did not necessarily lead to a better performance of the method. This thesis discusses some of the possible contributing factors to these results. Finally, topic modeling is used for learning the latent topical relations between research papers. The learned topic model is incorporated into the heterogeneous bibliographic information network graph and allows new predictive features to be learned. The results in this thesis suggest that topic modeling improves the performance of the proposed method by increasing the overall accuracy for predicting the future co-citation links between disparate research papers.
  6. Styltsvig, H.B.: Ontology-based information retrieval (2006) 0.01
    0.0061584353 = product of:
      0.018475305 = sum of:
        0.018475305 = product of:
          0.03695061 = sum of:
            0.03695061 = weight(_text_:processing in 1154) [ClassicSimilarity], result of:
              0.03695061 = score(doc=1154,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.17890452 = fieldWeight in 1154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1154)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun phrases. Furthermore, we briefly cover the identification of semantic relations inside and between noun phrases, as well as discuss which kind of problems are caused by an increase in compoundness with respect to the structure of concepts in the evaluation of queries. Measuring similarity between concepts based on distances in the structure of the ontology is discussed. In addition, a shared nodes measure is introduced and, based on a set of intuitive similarity properties, compared to a number of different measures. In this comparison the shared nodes measure appears to be superior, though more computationally complex. Some of the major problems of shared nodes which relate to the way relations differ with respect to the degree they bring the concepts they connect closer are discussed. A generalized measure called weighted shared nodes is introduced to deal with these problems. Finally, the utilization of concept similarity in query evaluation is discussed. A semantic expansion approach that incorporates concept similarity is introduced and a generalized fuzzy set retrieval model that applies expansion during query evaluation is presented. While not commonly used in present information retrieval systems, it appears that the fuzzy set model comprises the flexibility needed when generalizing to an ontology-based retrieval model and, with the introduction of a hierarchical fuzzy aggregation principle, compound concepts can be handled in a straightforward and natural manner.
  7. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.00
    0.004608375 = product of:
      0.013825124 = sum of:
        0.013825124 = product of:
          0.027650248 = sum of:
            0.027650248 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.027650248 = score(doc=4399,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22