Search (12 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[1990 TO 2000}
  1. Priss, U.: Description logic and faceted knowledge representation (1999) 0.06
    0.06057233 = product of:
      0.12114466 = sum of:
        0.10090631 = weight(_text_:description in 2655) [ClassicSimilarity], result of:
          0.10090631 = score(doc=2655,freq=4.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.43587846 = fieldWeight in 2655, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.020238347 = product of:
          0.040476695 = sum of:
            0.040476695 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.040476695 = score(doc=2655,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  2. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.05
    0.05117034 = product of:
      0.10234068 = sum of:
        0.0686101 = weight(_text_:26 in 6089) [ClassicSimilarity], result of:
          0.0686101 = score(doc=6089,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.3901819 = fieldWeight in 6089, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.078125 = fieldNorm(doc=6089)
        0.03373058 = product of:
          0.06746116 = sum of:
            0.06746116 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.06746116 = score(doc=6089,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    7. 1.1997 17:39:26
    Pages
    S.11-22
  3. Vickery, B.C.: Ontologies (1997) 0.02
    0.023783846 = product of:
      0.09513538 = sum of:
        0.09513538 = weight(_text_:description in 4891) [ClassicSimilarity], result of:
          0.09513538 = score(doc=4891,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.41095015 = fieldWeight in 4891, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0625 = fieldNorm(doc=4891)
      0.25 = coord(1/4)
    
    Abstract
    Discusses the emergence of the term 'ontology' in knowledge engineering (and now in information science) with a definition of the term as currently used. Ontology is the study of what exists and what must be assumed to exist in order to achieve a cogent description or reality. The term has seen extensive application to artificial intelligence. Describes the process of building an ontology and the uses of such tools in knowledge engineering. Concludes by comparing ontologies with similar tools used in information science
  4. Fischer, D.H.: From thesauri towards ontologies? (1998) 0.02
    0.017837884 = product of:
      0.071351536 = sum of:
        0.071351536 = weight(_text_:description in 2176) [ClassicSimilarity], result of:
          0.071351536 = score(doc=2176,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.3082126 = fieldWeight in 2176, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.046875 = fieldNorm(doc=2176)
      0.25 = coord(1/4)
    
    Abstract
    The ISO 2788 guidelines for monolingual thesauri contain a differentiation of "the hierarchical relationship" into "generic", "partitive", and "instance", which, for purposes of document retrieval, was deemed adequate. However, ontologies, designed as language inventories for a wider scope of knowledge representation, are based on all these and some more logical differentiations. Rereading the ISO 2788 standard and inspecting the published Cyc Upper Ontology, it is argued that the adoption of the document-retrieval definition of subsumption generally prevents the conception or use of a thesaurus as a substructure of an ontology of the new kind as constructed for AI applications. When a thesaurus is used for fact description and inference on fact descriptions, the instance-of relationship too should be reconsidered: It may also link concepts and metaconcepts, and then its distinction from subsumption is needed. The treatment of the instance-of relationship in thesauri, the Cyc Upper Ontology, and WordNet is described from this perspective
  5. Hesse, W.; Verrijn-Stuart, A.: Towards a theory of information systems : the FRISCO approach (1999) 0.01
    0.008576263 = product of:
      0.03430505 = sum of:
        0.03430505 = weight(_text_:26 in 3059) [ClassicSimilarity], result of:
          0.03430505 = score(doc=3059,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.19509095 = fieldWeight in 3059, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3059)
      0.25 = coord(1/4)
    
    Date
    6. 9.2009 13:20:26
  6. Soergel, D.: SemWeb: Proposal for an Open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology : exploration and development of the concept (1996) 0.01
    0.007899991 = product of:
      0.031599965 = sum of:
        0.031599965 = product of:
          0.06319993 = sum of:
            0.06319993 = weight(_text_:access in 3576) [ClassicSimilarity], result of:
              0.06319993 = score(doc=3576,freq=8.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.37448242 = fieldWeight in 3576, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3576)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM an on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed through a common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowledge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system woul be designed to be usable by many levels of users for improved information exchange.
    Content
    Expanded version of a paper published in Advances in Knowledge Organization v.5 (1996): 165-173 (4th Annual ISKO Conference, Washington, D.C., 1996 July 15-18): SemWeb: proposal for an open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology.
  7. Soergel, D.: SemWeb: proposal for an open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology (1996) 0.01
    0.006841593 = product of:
      0.027366372 = sum of:
        0.027366372 = product of:
          0.054732744 = sum of:
            0.054732744 = weight(_text_:access in 3575) [ClassicSimilarity], result of:
              0.054732744 = score(doc=3575,freq=6.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.3243113 = fieldWeight in 3575, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3575)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM and on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed througha common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowldge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system would be designed to be usable by many levels of users for improved information exchange.
  8. Giunchiglia, F.; Villafiorita, A.; Walsh, T.: Theories of abstraction (1997) 0.01
    0.006746116 = product of:
      0.026984464 = sum of:
        0.026984464 = product of:
          0.05396893 = sum of:
            0.05396893 = weight(_text_:22 in 4476) [ClassicSimilarity], result of:
              0.05396893 = score(doc=4476,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.30952093 = fieldWeight in 4476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4476)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1.10.2018 14:13:22
  9. Priss, U.: Faceted knowledge representation (1999) 0.01
    0.0059028515 = product of:
      0.023611406 = sum of:
        0.023611406 = product of:
          0.04722281 = sum of:
            0.04722281 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04722281 = score(doc=2654,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:30:31
  10. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.01
    0.005059587 = product of:
      0.020238347 = sum of:
        0.020238347 = product of:
          0.040476695 = sum of:
            0.040476695 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.040476695 = score(doc=2230,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  11. Wright, L.W.; Nardini, H.K.G.; Aronson, A.R.; Rindflesch, T.C.: Hierarchical concept indexing of full-text documents in the Unified Medical Language System Information sources Map (1999) 0.00
    0.0047399946 = product of:
      0.018959979 = sum of:
        0.018959979 = product of:
          0.037919957 = sum of:
            0.037919957 = weight(_text_:access in 2111) [ClassicSimilarity], result of:
              0.037919957 = score(doc=2111,freq=2.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.22468945 = fieldWeight in 2111, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Full-text documents are a vital and rapidly growing part of online biomedical information. A single large document can contain as much information as a small database, but normally lacks the tight structure and consistent indexing of a database. Retrieval systems will often miss highly relevant parts of a document if the document as a whole appears irrelevant. Access to full-text information is further complicated by the need to search separately many disparate information resources. This research explores how these problems can be addressed by the combined use of 2 techniques: 1) natural language processing for automatic concept-based indexing of full text, and 2) methods for exploiting the structure and hierarchy of full-text documents. We describe methods for applying these techniques to a large collection of full-text documents drawn from the Health Services / Technology Assessment Text (HSTAT) database at the NLM and examine how this hierarchical concept indexing can assist both document- and source-level retrieval in the context of NLM's Information Source Map project
  12. Semantic knowledge and semantic representations (1995) 0.00
    0.00446891 = product of:
      0.01787564 = sum of:
        0.01787564 = product of:
          0.03575128 = sum of:
            0.03575128 = weight(_text_:access in 3568) [ClassicSimilarity], result of:
              0.03575128 = score(doc=3568,freq=4.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.21183924 = fieldWeight in 3568, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3568)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    G. Gainotti, M.C. Silveri, A. Daniele, L. Giustolisi, Neuroanatomical Correlates of Category-specific Semantic Disorders: A Critical Survey. J. S. Snowden, H. L. Griffiths, D. Neary, Autobiographical Experience and Word Meaning. L. Cipolotti, E.K. Warrington, Towards a Unitary Account of Access Dysphasia: A Single Case Study. E. Forde, G.W. Humphreys, Refractory Semantics in Global Aphasia: On Semantic Organisation and the Access-Storage Distinction in Neuropsychology. A. E. Hillis, A. Caramazza, The Compositionality of Lexical Semantic Representations: Clues from Semantic Errors in Object Naming. H.E. Moss, L.K. Tyler, Investigating Semantic Memory Impairments: The Contribution of Semantic Priming. K.R. Laws, S.A. Humber, D.J.C. Ramsey, R.A. McCarthy, Probing Sensory and Associative Semantics for Animals and Objects in Normal Subjects. K.R. Laws, J.J. Evans, J. R. Hodges, R.A. McCarthy, Naming without Knowing and Appearance without Associations: Evidence for Constructive Processes in Semantic Memory? J. Powell, J. Davidoff, Selective Impairments of Object-knowledge in a Case of Acquired Cortical Blindness. J.R. Hodges, N. Graham, K. Patterson, Charting the Progression in Semantic Dementia: Implications for the Organisation of Semantic Memory. E. Funnell, Objects and Properties: A Study of the Breakdown of Semantic Memory. L.J. Tippett, S. McAuliffe, M. J. Farrar, Preservation of Categorical Knowledge in Alzheimer's Disease: A Computational Account. G. W. Humphreys, C. Lamote, T.J. Lloyd-Jones, An Interactive Activation Approach to Object Processing: Effects of Structural Similarity, Name Frequency, and Task in Normality and Pathology.