Search (17 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2000 TO 2010}
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.08
    0.078307316 = product of:
      0.15661463 = sum of:
        0.039153658 = product of:
          0.11746097 = sum of:
            0.11746097 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.11746097 = score(doc=701,freq=2.0), product of:
                0.31349787 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03697776 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.11746097 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.11746097 = score(doc=701,freq=2.0), product of:
            0.31349787 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03697776 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(2/4)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Park, J.-r.: Evolution of concept networks and implications for knowledge representation (2007) 0.02
    0.024815073 = product of:
      0.09926029 = sum of:
        0.09926029 = weight(_text_:evolution in 847) [ClassicSimilarity], result of:
          0.09926029 = score(doc=847,freq=6.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.5067985 = fieldWeight in 847, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=847)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this paper is to present descriptive characteristics of the historical development of concept networks. The linguistic principles, mechanisms and motivations behind the evolution of concept networks are discussed. Implications emanating from the idea of the historical development of concept networks are discussed in relation to knowledge representation and organization schemes. Design/methodology/approach - Natural language data including both speech and text are analyzed by examining discourse contexts in which a linguistic element such as a polysemy or homonym occurs. Linguistic literature on the historical development of concept networks is reviewed and analyzed. Findings - Semantic sense relations in concept networks can be captured in a systematic and regular manner. The mechanism and impetus behind the process of concept network development suggest that semantic senses in concept networks are closely intertwined with pragmatic contexts and discourse structure. The interrelation and permeability of the semantic senses of concept networks are captured on a continuum scale based on three linguistic parameters: concrete shared semantic sense; discourse and text structure; and contextualized pragmatic information. Research limitations/implications - Research findings signify the critical need for linking discourse structure and contextualized pragmatic information to knowledge representation and organization schemes. Originality/value - The idea of linguistic characteristics, principles, motivation and mechanisms underlying the evolution of concept networks provides theoretical ground for developing a model for integrating knowledge representation and organization schemes with discourse structure and contextualized pragmatic information.
  3. Pike, W.; Gahegan, M.: Beyond ontologies : toward situated representations of scientific knowledge (2007) 0.01
    0.014326988 = product of:
      0.05730795 = sum of:
        0.05730795 = weight(_text_:evolution in 2544) [ClassicSimilarity], result of:
          0.05730795 = score(doc=2544,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.2926002 = fieldWeight in 2544, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2544)
      0.25 = coord(1/4)
    
    Abstract
    In information systems that support knowledge-discovery applications such as scientific exploration, reliance on highly structured ontologies as data-organization aids can be limiting. With current computational aids to science work, the human knowledge that creates meaning out of analyses is often only recorded when work reaches publication-or worse, left unrecorded altogether-for lack of an ontological model for scientific concepts that can capture knowledge as it is created and used. We argue for an approach to representing scientific concepts that reflects (1) the situated processes of science work, (2) the social construction of knowledge, and (3) the emergence and evolution of understanding over time. In this model, knowledge is the result of collaboration, negotiation, and manipulation by teams of researchers. Capturing the situations in which knowledge is created and used helps these collaborators discover areas of agreement and discord, while allowing individual inquirers to maintain different perspectives on the same information. The capture of provenance information allows historical trails of reasoning to be reconstructed, allowing end users to evaluate the utility and trustworthiness of knowledge representations. We present a proof-of-concept system, called Codex, based on this situated knowledge model. Codex supports visualization of knowledge structures through concept mapping, and enables inference across those structures. The proof-of-concept is deployed in the domain of geoscience to support distributed teams of learners and researchers.
  4. McGuinness, D.L.: Ontologies come of age (2003) 0.01
    0.014326988 = product of:
      0.05730795 = sum of:
        0.05730795 = weight(_text_:evolution in 3084) [ClassicSimilarity], result of:
          0.05730795 = score(doc=3084,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.2926002 = fieldWeight in 3084, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3084)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
  5. Klein, M.; Ding, Y.; Fensel, D.; Omelayenko, B.: Ontology management : storing, aligning and maintaining ontologies (2004) 0.01
    0.01146159 = product of:
      0.04584636 = sum of:
        0.04584636 = weight(_text_:evolution in 4402) [ClassicSimilarity], result of:
          0.04584636 = score(doc=4402,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.23408018 = fieldWeight in 4402, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies need to be stored, sometimes aligned and their evolution needs to be managed. All these tasks together are called ontology management. Alignment is a central task in ontology re-use. Re-use of existing ontologies often requires considerable effort: the ontologies either need to be integrated, which means that they are merged into one new ontology, or the ontologies can be kept separate. In both cases, the ontologies have to be aligned, which means that they have to be brought into mutual agreement. The problems that underlie the difficulties in integrating and aligning are the mismatches that may exist between separate ontologies. Ontologies can differ at the language level, which can mean that they are represented in a different syntax, or that the expressiveness of the ontology language is dissimilar. Ontologies also can have mismatches at the model level, for example, in the paradigm, or modelling style. Ontology alignment is very relevant in a Semantic Web context. The Semantic Web will provide us with a lot of freely accessible domain specific ontologies. To form a real web of semantics - which will allow computers to combine and infer implicit knowledge - those separate ontologies should be aligned and linked.
  6. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.00
    0.0041749803 = product of:
      0.016699921 = sum of:
        0.016699921 = product of:
          0.050099764 = sum of:
            0.050099764 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.050099764 = score(doc=539,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:22:07
  7. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.00
    0.0033399842 = product of:
      0.013359937 = sum of:
        0.013359937 = product of:
          0.04007981 = sum of:
            0.04007981 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.04007981 = score(doc=3376,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    31. 7.2010 16:58:22
  8. OWL Web Ontology Language Test Cases (2004) 0.00
    0.0033399842 = product of:
      0.013359937 = sum of:
        0.013359937 = product of:
          0.04007981 = sum of:
            0.04007981 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.04007981 = score(doc=4685,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    14. 8.2011 13:33:22
  9. Priss, U.: Faceted information representation (2000) 0.00
    0.0029224863 = product of:
      0.011689945 = sum of:
        0.011689945 = product of:
          0.035069834 = sum of:
            0.035069834 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.035069834 = score(doc=5095,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:47:06
  10. Definition of the CIDOC Conceptual Reference Model (2003) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 1652) [ClassicSimilarity], result of:
              0.030059857 = score(doc=1652,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 1652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1652)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    6. 8.2010 14:22:28
  11. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.030059857 = score(doc=2418,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  12. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
              0.030059857 = score(doc=2623,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 2623, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2623)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  13. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.030059857 = score(doc=3387,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    1. 8.2010 12:35:22
  14. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.030059857 = score(doc=4820,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    3.12.2016 18:39:22
  15. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.00
    0.002504988 = product of:
      0.010019952 = sum of:
        0.010019952 = product of:
          0.030059857 = sum of:
            0.030059857 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.030059857 = score(doc=3261,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    28.11.2016 12:43:22
  16. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.00
    0.0023617256 = product of:
      0.009446902 = sum of:
        0.009446902 = product of:
          0.028340707 = sum of:
            0.028340707 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.028340707 = score(doc=2654,freq=4.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  17. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.00
    0.0020874902 = product of:
      0.008349961 = sum of:
        0.008349961 = product of:
          0.025049882 = sum of:
            0.025049882 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.025049882 = score(doc=4607,freq=2.0), product of:
                0.12948982 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03697776 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a