Search (126 results, page 2 of 7)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  1. Almeida, M.B.; Felipe, E.R.; Barcelos, R.: Toward a document-centered ontological theory for information architecture in corporations (2020) 0.03
    0.031112304 = product of:
      0.062224608 = sum of:
        0.043081827 = weight(_text_:digital in 8) [ClassicSimilarity], result of:
          0.043081827 = score(doc=8,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 8, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=8)
        0.01914278 = weight(_text_:library in 8) [ClassicSimilarity], result of:
          0.01914278 = score(doc=8,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 8, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=8)
      0.5 = coord(2/4)
    
    Abstract
    The beginning of the 21st century attested to the first movements toward information architecture (IA), originating from the field of library and information science (LIS). IA is acknowledged as an important meta-discipline concerned with the design, implementation, and maintenance of digital information spaces. Despite the relevance of IA, there is little research about the subject within LIS, and still less if one considers initiatives for creating a theory for IA. In this article, we provide a theory for IA and describe the resources needed to create it through ontological models. We also choose the "document" as the key entity for such theory, contemplating kinds of documents that not only serve to register information, but also create claims and obligations in society. To achieve our goals, we provide a background for subtheories from LIS and from Applied Ontology. As a result, we present some basic theory for IA in the form of a formal framework to represent corporations in which IA activities take place, acknowledging that our approach is de facto a subset of IA we call the enterprise information architecture (EAI) approach. By doing this, we highlight the effects that documents cause within corporations in the scope of EIA.
  2. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.02
    0.024985643 = product of:
      0.09994257 = sum of:
        0.09994257 = sum of:
          0.059197973 = weight(_text_:project in 2623) [ClassicSimilarity], result of:
            0.059197973 = score(doc=2623,freq=2.0), product of:
              0.21156175 = queryWeight, product of:
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.050121464 = queryNorm
              0.27981415 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
          0.0407446 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
            0.0407446 = score(doc=2623,freq=2.0), product of:
              0.17551683 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050121464 = queryNorm
              0.23214069 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
      0.25 = coord(1/4)
    
    Abstract
    Contemporary retrieval systems, which search across collections, usually ignore collection-level metadata. Alternative approaches, exploiting collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection/item metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata creators describing objects, and (iii) system designers implementing systems that take advantage of collection-level metadata. We present three examples of collection/item metadata relationship categories, attribute/value-propagation, value-propagation, and value-constraint and show that even in these simple cases a precise formulation requires modal notions in addition to first-order logic. These formulations are related to recent work in information retrieval and ontology evaluation.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Qin, J.: ¬A relation typology in knowledge organization systems : case studies in the research data management domain (2018) 0.02
    0.024370763 = product of:
      0.097483054 = sum of:
        0.097483054 = weight(_text_:digital in 4773) [ClassicSimilarity], result of:
          0.097483054 = score(doc=4773,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.493069 = fieldWeight in 4773, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=4773)
      0.25 = coord(1/4)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  4. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.02
    0.021778613 = product of:
      0.043557227 = sum of:
        0.030157281 = weight(_text_:digital in 517) [ClassicSimilarity], result of:
          0.030157281 = score(doc=517,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.15253544 = fieldWeight in 517, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.02734375 = fieldNorm(doc=517)
        0.013399946 = weight(_text_:library in 517) [ClassicSimilarity], result of:
          0.013399946 = score(doc=517,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.10167781 = fieldWeight in 517, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.02734375 = fieldNorm(doc=517)
      0.5 = coord(2/4)
    
    Content
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  5. Priss, U.: Description logic and faceted knowledge representation (1999) 0.02
    0.021671817 = product of:
      0.043343633 = sum of:
        0.022971334 = weight(_text_:library in 2655) [ClassicSimilarity], result of:
          0.022971334 = score(doc=2655,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.17430481 = fieldWeight in 2655, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.0407446 = score(doc=2655,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  6. Lacasta, J.; Nogueras-Iso, J.; López-Pellicer, F.J.; Muro-Medrano, P.R.; Zarazaga-Soria, F.J.: ThManager : an open source tool for creating and visualizing SKOS (2007) 0.02
    0.021324418 = product of:
      0.085297674 = sum of:
        0.085297674 = weight(_text_:digital in 2349) [ClassicSimilarity], result of:
          0.085297674 = score(doc=2349,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.43143538 = fieldWeight in 2349, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2349)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge Organization Systems denotes formally represented knowledge that is used within the context of Digital Libraries to improve data sharing and information retrieval. To increase their use, and to reuse them when possible, it is vital to manage them adequately and to provide them in a standard interchange format. Simple Knowledge Organization Systems (SKOS) seems to be the most promising representation for the type of knowledge models used in digital libraries, but there is a lack of tools that are able to properly manage it. This work presents a tool that fills this gap, facilitating their use in different environments and using SKOS as an interchange format.
  7. Simões, M. da Graça; Machado, L.M.; Souza, R.R.; Almeida, M.B.; Tavares Lopes, A.: Automatic indexing and ontologies : the consistency of research chronology and authoring in the context of Information Science (2018) 0.02
    0.021324418 = product of:
      0.085297674 = sum of:
        0.085297674 = weight(_text_:digital in 5909) [ClassicSimilarity], result of:
          0.085297674 = score(doc=5909,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.43143538 = fieldWeight in 5909, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5909)
      0.25 = coord(1/4)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  8. Baião Salgado Silva, G.; Lima, G.Â. Borém de Oliveira: Using topic maps in establishing compatibility of semantically structured hypertext contents (2012) 0.02
    0.02082137 = product of:
      0.08328548 = sum of:
        0.08328548 = sum of:
          0.049331643 = weight(_text_:project in 633) [ClassicSimilarity], result of:
            0.049331643 = score(doc=633,freq=2.0), product of:
              0.21156175 = queryWeight, product of:
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.050121464 = queryNorm
              0.23317845 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
          0.033953834 = weight(_text_:22 in 633) [ClassicSimilarity], result of:
            0.033953834 = score(doc=633,freq=2.0), product of:
              0.17551683 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050121464 = queryNorm
              0.19345059 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
      0.25 = coord(1/4)
    
    Abstract
    Considering the characteristics of hypertext systems and problems such as cognitive overload and the disorientation of users, this project studies subject hypertext documents that have undergone conceptual structuring using facets for content representation and improvement of information retrieval during navigation. The main objective was to assess the possibility of the application of topic map technology for automating the compatibilization process of these structures. For this purpose, two dissertations from the UFMG Information Science Post-Graduation Program were adopted as samples. Both dissertations had been duly analyzed and structured on the MHTX (Hypertextual Map) prototype database. The faceted structures of both dissertations, which had been represented in conceptual maps, were then converted into topic maps. It was then possible to use the merge property of the topic maps to promote the semantic interrelationship between the maps and, consequently, between the hypertextual information resources proper. The merge results were then analyzed in the light of theories dealing with the compatibilization of languages developed within the realm of information technology and librarianship from the 1960s on. The main goals accomplished were: (a) the detailed conceptualization of the merge process of the topic maps, considering the possible compatibilization levels and the applicability of this technology in the integration of faceted structures; and (b) the production of a detailed sequence of steps that may be used in the implementation of topic maps based on faceted structures.
    Date
    22. 2.2013 11:39:23
  9. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.02
    0.020432387 = product of:
      0.040864773 = sum of:
        0.021657582 = weight(_text_:library in 2654) [ClassicSimilarity], result of:
          0.021657582 = score(doc=2654,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.16433616 = fieldWeight in 2654, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.019207189 = product of:
          0.038414378 = sum of:
            0.038414378 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.038414378 = score(doc=2654,freq=4.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.02
    0.019901544 = product of:
      0.079606175 = sum of:
        0.079606175 = product of:
          0.23881851 = sum of:
            0.23881851 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.23881851 = score(doc=400,freq=2.0), product of:
                0.42493033 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050121464 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  11. Green, R.: Relationships in the Dewey Decimal Classification (DDC) : plan of study (2008) 0.02
    0.019732658 = product of:
      0.07893063 = sum of:
        0.07893063 = product of:
          0.15786126 = sum of:
            0.15786126 = weight(_text_:project in 3397) [ClassicSimilarity], result of:
              0.15786126 = score(doc=3397,freq=8.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.74617106 = fieldWeight in 3397, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3397)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    EPC Exhibit 129-36.1 presented intermediate results of a project to connect Relative Index terms to topics associated with classes and to determine if those Relative Index terms approximated the whole of the corresponding class or were in standing room in the class. The Relative Index project constitutes the first stage of a long(er)-term project to instill a more systematic treatment of relationships within the DDC. The present exhibit sets out a plan of study for that long-term project.
  12. Urs, S.R.; Angrosh, M.A.: Ontology-based knowledge organization systems in digital libraries : a comparison of experiments in OWL and KAON ontologies (2006 (?)) 0.02
    0.019266779 = product of:
      0.077067114 = sum of:
        0.077067114 = weight(_text_:digital in 2799) [ClassicSimilarity], result of:
          0.077067114 = score(doc=2799,freq=10.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.38980526 = fieldWeight in 2799, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=2799)
      0.25 = coord(1/4)
    
    Abstract
    Grounded on a strong belief that ontologies enhance the performance of information retrieval systems, there has been an upsurge of interest in ontologies. Its importance is identified in diverse research fields such as knowledge engineering, knowledge representation, qualitative modeling, language engineering, database design, information integration, object-oriented analysis, information retrieval and extraction, knowledge management and agent-based systems design (Guarino, 1998). While the role-played by ontologies, automatically lends a place of legitimacy for these tools, research in this area gains greater significance in the wake of various challenges faced in the contemporary digital environment. With the objective of overcoming various pitfalls associated with current search mechanisms, ontologies are increasingly used for developing efficient information retrieval systems. An indicator of research interest in the area of ontology is the Swoogle, a search engine for Semantic Web documents, terms and data found on the Web (Ding, Li et al, 2004). Given the complex nature of the digital content archived in digital libraries, ontologies can be employed for designing efficient forms of information retrieval in digital libraries. Knowledge representation assumes greater significance due to its crucial role in ontology development. These systems aid in developing intelligent information systems, wherein the notion of intelligence implies the ability of the system to find implicit consequences of its explicitly represented knowledge (Baader and Nutt, 2003). Knowledge representation formalisms such as 'Description Logics' are used to obtain explicit knowledge representation of the subject domain. These representations are developed into ontologies, which are used for developing intelligent information systems. Against this backdrop, the paper examines the use of Description Logics for conceptually modeling a chosen domain, which would be utilized for developing domain ontologies. The knowledge representation languages identified for this purpose are Web Ontology Language (OWL) and KArlsruhe ONtology (KAON) language. Drawing upon the various technical constructs in developing ontology-based information systems, the paper explains the working of the prototypes and also presents a comparative study of the two prototypes.
  13. Lacasta, J.; Nogueras-Iso, J.; López-Pellicer, F.J.; Muro-Medrano, P.R.; Zarazaga-Soria, F.J.: ThManager : an open source tool for creating and visualizing SKOS (2007) 0.02
    0.018278074 = product of:
      0.073112294 = sum of:
        0.073112294 = weight(_text_:digital in 6089) [ClassicSimilarity], result of:
          0.073112294 = score(doc=6089,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.36980176 = fieldWeight in 6089, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=6089)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge Organization Systems denotes formally represented knowledge that is used within the context of Digital Libraries to improve data sharing and information retrieval. To increase their use, and to reuse them when possible, it is vital to manage them adequately and to provide them in a standard interchange format. Simple Knowledge Organization Systems (SKOS) seems to be the most promising representation for the type of knowledge models used in digital libraries, but there is a lack of tools that are able to properly manage it. This work presents a tool that fills this gap, facilitating their use in different environments and using SKOS as an interchange format.
  14. Melgar Estrada, L.M.: Topic maps from a knowledge organization perspective (2011) 0.02
    0.018278074 = product of:
      0.073112294 = sum of:
        0.073112294 = weight(_text_:digital in 4298) [ClassicSimilarity], result of:
          0.073112294 = score(doc=4298,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.36980176 = fieldWeight in 4298, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=4298)
      0.25 = coord(1/4)
    
    Abstract
    This article comprises a literature review and conceptual analysis of Topic Maps-the ISO standard for representing information about the structure of information resources-according to the principles of Knowledge Organization (KO). Using the main principles from this discipline, the study shows how Topic Maps is proposed as an ontology model independent of technology. Topic Maps constitutes a 'bibliographic' meta-language able to represent, extend, and integrate almost all existing Knowledge Organization Systems (KOS) in a standards-based generic model applicable to digital content and to the Web. This report also presents an inventory of the current applications of Topic Maps in Libraries, Archives, and Museums (LAM), as well as in the Digital Humanities. Finally, some directions for further research are suggested, which relate Topic Maps to the main research trends in KO.
  15. Das, S.; Roy, S.: Faceted ontological model for brain tumour study (2016) 0.02
    0.01805985 = product of:
      0.0361197 = sum of:
        0.01914278 = weight(_text_:library in 2831) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2831,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2831)
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 2831) [ClassicSimilarity], result of:
              0.033953834 = score(doc=2831,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 2831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2831)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The purpose of this work is to develop an ontology-based framework for developing an information retrieval system to cater to specific queries of users. For creating such an ontology, information was obtained from a wide range of information sources involved with brain tumour study and research. The information thus obtained was compiled and analysed to provide a standard, reliable and relevant information base to aid our proposed system. Facet-based methodology has been used for ontology formalization for quite some time. Ontology formalization involves different steps such as identification of the terminology, analysis, synthesis, standardization and ordering. A vast majority of the ontologies being developed nowadays lack flexibility. This becomes a formidable constraint when it comes to interoperability. We found that a facet-based method provides a distinct guideline for the development of a robust and flexible model concerning the domain of brain tumours. Our attempt has been to bridge library and information science and computer science, which itself involved an experimental approach. It was discovered that a faceted approach is really enduring, as it helps in the achievement of properties like navigation, exploration and faceted browsing. Computer-based brain tumour ontology supports the work of researchers towards gathering information on brain tumour research and allows users across the world to intelligently access new scientific information quickly and efficiently.
    Date
    12. 3.2016 13:21:22
  16. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.02
    0.01795752 = product of:
      0.07183008 = sum of:
        0.07183008 = weight(_text_:library in 4796) [ClassicSimilarity], result of:
          0.07183008 = score(doc=4796,freq=44.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.5450414 = fieldWeight in 4796, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.25 = coord(1/4)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  17. Grzonkowski, S.; Kruk, S.R.; Gzella, A.; Demczuk, J.; McDaniel, B.: Community-aware ontologies (2009) 0.02
    0.017232731 = product of:
      0.068930924 = sum of:
        0.068930924 = weight(_text_:digital in 3382) [ClassicSimilarity], result of:
          0.068930924 = score(doc=3382,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.34865242 = fieldWeight in 3382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=3382)
      0.25 = coord(1/4)
    
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  18. Hudon, M.: Facet (2020) 0.02
    0.015078641 = product of:
      0.060314562 = sum of:
        0.060314562 = weight(_text_:digital in 5899) [ClassicSimilarity], result of:
          0.060314562 = score(doc=5899,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 5899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.25 = coord(1/4)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
  19. Wright, H.: Semantic Web and ontologies (2018) 0.02
    0.015078641 = product of:
      0.060314562 = sum of:
        0.060314562 = weight(_text_:digital in 80) [ClassicSimilarity], result of:
          0.060314562 = score(doc=80,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 80, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=80)
      0.25 = coord(1/4)
    
    Abstract
    The Semantic Web and ontologies can help archaeologists combine and share data, making it more open and useful. Archaeologists create diverse types of data, using a wide variety of technologies and methodologies. Like all research domains, these data are increasingly digital. The creation of data that are now openly and persistently available from disparate sources has also inspired efforts to bring archaeological resources together and make them more interoperable. This allows functionality such as federated cross-search across different datasets, and the mapping of heterogeneous data to authoritative structures to build a single data source. Ontologies provide the structure and relationships for Semantic Web data, and have been developed for use in cultural heritage applications generally, and archaeology specifically. A variety of online resources for archaeology now incorporate Semantic Web principles and technologies.
  20. Biagetti, M.T.: Ontologies as knowledge organization systems (2021) 0.02
    0.015078641 = product of:
      0.060314562 = sum of:
        0.060314562 = weight(_text_:digital in 439) [ClassicSimilarity], result of:
          0.060314562 = score(doc=439,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 439, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=439)
      0.25 = coord(1/4)
    
    Abstract
    This contribution presents the principal features of ontologies, drawing special attention to the comparison between ontologies and the different kinds of know­ledge organization systems (KOS). The focus is on the semantic richness exhibited by ontologies, which allows the creation of a great number of relationships between terms. That establishes ontologies as the most evolved type of KOS. The concepts of "conceptualization" and "formalization" and the key components of ontologies are described and discussed, along with upper and domain ontologies and special typologies, such as bibliographical ontologies and biomedical ontologies. The use of ontologies in the digital libraries environment, where they have replaced thesauri for query expansion in searching, and the role they are playing in the Semantic Web, especially for semantic interoperability, are sketched.

Authors

Years

Types

  • a 96
  • el 26
  • m 6
  • x 6
  • p 2
  • n 1
  • s 1
  • More… Less…