Search (25 results, page 1 of 2)

  • × language_ss:"e"
  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2020 TO 2030}
  1. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.01
    0.012126694 = product of:
      0.08488686 = sum of:
        0.025709987 = weight(_text_:wide in 79) [ClassicSimilarity], result of:
          0.025709987 = score(doc=79,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.05917687 = weight(_text_:web in 79) [ClassicSimilarity], result of:
          0.05917687 = score(doc=79,freq=36.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6119082 = fieldWeight in 79, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
      0.14285715 = coord(2/14)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Theme
    Semantic Web
  2. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.008009522 = product of:
      0.05606665 = sum of:
        0.014125523 = weight(_text_:information in 667) [ClassicSimilarity], result of:
          0.014125523 = score(doc=667,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27153665 = fieldWeight in 667, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
        0.04194113 = weight(_text_:retrieval in 667) [ClassicSimilarity], result of:
          0.04194113 = score(doc=667,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46789268 = fieldWeight in 667, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
      0.14285715 = coord(2/14)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
    Series
    ¬The Information retrieval series, vol 43
    Source
    Evaluating information retrieval and access tasks. Eds.: Sakai, T., Oard, D., Kando, N. [https://doi.org/10.1007/978-981-15-5554-1_12]
  3. Qi, Q.; Hessen, D.J.; Heijden, P.G.M. van der: Improving information retrieval through correspondenceanalysis instead of latent semantic analysis (2023) 0.01
    0.007069463 = product of:
      0.04948624 = sum of:
        0.013536699 = weight(_text_:information in 1045) [ClassicSimilarity], result of:
          0.013536699 = score(doc=1045,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 1045, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1045)
        0.03594954 = weight(_text_:retrieval in 1045) [ClassicSimilarity], result of:
          0.03594954 = score(doc=1045,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 1045, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1045)
      0.14285715 = coord(2/14)
    
    Abstract
    The initial dimensions extracted by latent semantic analysis (LSA) of a document-term matrixhave been shown to mainly display marginal effects, which are irrelevant for informationretrieval. To improve the performance of LSA, usually the elements of the raw document-term matrix are weighted and the weighting exponent of singular values can be adjusted.An alternative information retrieval technique that ignores the marginal effects is correspon-dence analysis (CA). In this paper, the information retrieval performance of LSA and CA isempirically compared. Moreover, it is explored whether the two weightings also improve theperformance of CA. The results for four empirical datasets show that CA always performsbetter than LSA. Weighting the elements of the raw data matrix can improve CA; however,it is data dependent and the improvement is small. Adjusting the singular value weightingexponent often improves the performance of CA; however, the extent of the improvementdepends on the dataset and the number of dimensions. (PDF) Improving information retrieval through correspondence analysis instead of latent semantic analysis.
    Source
    Journal of intelligent information systems [https://doi.org/10.1007/s10844-023-00815-y]
  4. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.01
    0.0062697097 = product of:
      0.043887965 = sum of:
        0.034519844 = weight(_text_:web in 40) [ClassicSimilarity], result of:
          0.034519844 = score(doc=40,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.35694647 = fieldWeight in 40, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=40)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
              0.028104367 = score(doc=40,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 40, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=40)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
    Object
    Web of Science
  5. Baines, D.; Elliott, R.J.: Defining misinformation, disinformation and malinformation : an urgent need for clarity during the COVID-19 infodemic (2020) 0.01
    0.006202581 = product of:
      0.043418065 = sum of:
        0.032137483 = weight(_text_:wide in 5853) [ClassicSimilarity], result of:
          0.032137483 = score(doc=5853,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 5853, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5853)
        0.011280581 = weight(_text_:information in 5853) [ClassicSimilarity], result of:
          0.011280581 = score(doc=5853,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.21684799 = fieldWeight in 5853, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5853)
      0.14285715 = coord(2/14)
    
    Abstract
    COVID-19 is an unprecedented global health crisis that will have immeasurable consequences for our economic and social well-being. Tedros Adhanom Ghebreyesus, the director general of the World Health Organization, stated "We're not just fighting an epidemic; we're fighting an infodemic". Currently, there is no robust scientific basis to the existing definitions of false information used in the fight against the COVID-19infodemic. The purpose of this paper is to demonstrate how the use of a novel taxonomy and related model (based upon a conceptual framework that synthesizes insights from information science, philosophy, media studies and politics) can produce new scientific definitions of mis-, dis- and malinformation. We undertake our analysis from the viewpoint of information systems research. The conceptual approach to defining mis-,dis- and malinformation can be applied to a wide range of empirical examples and, if applied properly, may prove useful in fighting the COVID-19 infodemic. In sum, our research suggests that: (i) analyzing all types of information is important in the battle against the COVID-19 infodemic; (ii) a scientific approach is required so that different methods are not used by different studies; (iii) "misinformation", as an umbrella term, can be confusing and should be dropped from use; (iv) clear, scientific definitions of information types will be needed going forward; (v) malinformation is an overlooked phenomenon involving reconfigurations of the truth.
  6. DeSilva, J.M.; Traniello, J.F.A.; Claxton, A.G.; Fannin, L.D.: When and why did human brains decrease in size? : a new change-point analysis and insights from brain evolution in ants (2021) 0.01
    0.0056409207 = product of:
      0.026324296 = sum of:
        0.01928249 = weight(_text_:wide in 405) [ClassicSimilarity], result of:
          0.01928249 = score(doc=405,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.14686027 = fieldWeight in 405, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0234375 = fieldNorm(doc=405)
        0.0030268978 = weight(_text_:information in 405) [ClassicSimilarity], result of:
          0.0030268978 = score(doc=405,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.058186423 = fieldWeight in 405, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=405)
        0.0040149093 = product of:
          0.012044728 = sum of:
            0.012044728 = weight(_text_:22 in 405) [ClassicSimilarity], result of:
              0.012044728 = score(doc=405,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.116070345 = fieldWeight in 405, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=405)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
    Source
    Frontiers in ecology and evolution, 22 October 2021 [https://www.frontiersin.org/articles/10.3389/fevo.2021.742639/full]
  7. Gladun, A.; Rogushina, J.: Development of domain thesaurus as a set of ontology concepts with use of semantic similarity and elements of combinatorial optimization (2021) 0.00
    0.0044226884 = product of:
      0.030958816 = sum of:
        0.009988253 = weight(_text_:information in 572) [ClassicSimilarity], result of:
          0.009988253 = score(doc=572,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1920054 = fieldWeight in 572, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
        0.020970564 = weight(_text_:retrieval in 572) [ClassicSimilarity], result of:
          0.020970564 = score(doc=572,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
      0.14285715 = coord(2/14)
    
    Abstract
    We consider use of ontological background knowledge in intelligent information systems and analyze directions of their reduction in compliance with specifics of particular user task. Such reduction is aimed at simplification of knowledge processing without loss of significant information. We propose methods of generation of task thesauri based on domain ontology that contain such subset of ontological concepts and relations that can be used in task solving. Combinatorial optimization is used for minimization of task thesaurus. In this approach, semantic similarity estimates are used for determination of concept significance for user task. Some practical examples of optimized thesauri application for semantic retrieval and competence analysis demonstrate efficiency of proposed approach.
  8. Hobert, A.; Jahn, N.; Mayr, P.; Schmidt, B.; Taubert, N.: Open access uptake in Germany 2010-2018 : adoption in a diverse research landscape (2021) 0.00
    0.0033944983 = product of:
      0.023761487 = sum of:
        0.019725623 = weight(_text_:web in 250) [ClassicSimilarity], result of:
          0.019725623 = score(doc=250,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.2039694 = fieldWeight in 250, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=250)
        0.0040358636 = weight(_text_:information in 250) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=250,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=250)
      0.14285715 = coord(2/14)
    
    Abstract
    Es handelt sich um eine bibliometrische Untersuchung der Entwicklung der Open-Access-Verfügbarkeit wissenschaftlicher Zeitschriftenartikel in Deutschland, die im Zeitraum 2010-18 erschienen und im Web of Science indexiert sind. Ein besonderes Augenmerk der Analyse lag auf der Frage, ob und inwiefern sich die Open-Access-Profile der Universitäten und außeruniversitären Wissenschaftseinrichtungen in Deutschland voneinander unterscheiden.
    Content
    This study investigates the development of open access (OA) to journal articles from authors affiliated with German universities and non-university research institutions in the period 2010-2018. Beyond determining the overall share of openly available articles, a systematic classification of distinct categories of OA publishing allowed us to identify different patterns of adoption of OA. Taking into account the particularities of the German research landscape, variations in terms of productivity, OA uptake and approaches to OA are examined at the meso-level and possible explanations are discussed. The development of the OA uptake is analysed for the different research sectors in Germany (universities, non-university research institutes of the Helmholtz Association, Fraunhofer Society, Max Planck Society, Leibniz Association, and government research agencies). Combining several data sources (incl. Web of Science, Unpaywall, an authority file of standardised German affiliation information, the ISSN-Gold-OA 3.0 list, and OpenDOAR), the study confirms the growth of the OA share mirroring the international trend reported in related studies. We found that 45% of all considered articles during the observed period were openly available at the time of analysis. Our findings show that subject-specific repositories are the most prevalent type of OA. However, the percentages for publication in fully OA journals and OA via institutional repositories show similarly steep increases. Enabling data-driven decision-making regarding the implementation of OA in Germany at the institutional level, the results of this study furthermore can serve as a baseline to assess the impact recent transformative agreements with major publishers will likely have on scholarly communication.
  9. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo : a Web-Scale interface for ontology archiving under consumer-oriented aspects (2020) 0.00
    0.0030198572 = product of:
      0.042278 = sum of:
        0.042278 = weight(_text_:web in 52) [ClassicSimilarity], result of:
          0.042278 = score(doc=52,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43716836 = fieldWeight in 52, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=52)
      0.071428575 = coord(1/14)
    
    Abstract
    While thousands of ontologies exist on the web, a unified sys-tem for handling online ontologies - in particular with respect to discov-ery, versioning, access, quality-control, mappings - has not yet surfacedand users of ontologies struggle with many challenges. In this paper, wepresent an online ontology interface and augmented archive called DB-pedia Archivo, that discovers, crawls, versions and archives ontologies onthe DBpedia Databus. Based on this versioned crawl, different features,quality measures and, if possible, fixes are deployed to handle and sta-bilize the changes in the found ontologies at web-scale. A comparison toexisting approaches and ontology repositories is given.
  10. Advanced online media use (2023) 0.00
    0.0028179463 = product of:
      0.039451245 = sum of:
        0.039451245 = weight(_text_:web in 954) [ClassicSimilarity], result of:
          0.039451245 = score(doc=954,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.4079388 = fieldWeight in 954, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=954)
      0.071428575 = coord(1/14)
    
    Content
    "1. Use a range of different media 2. Access paywalled media content 3. Use an advertising and tracking blocker 4. Use alternatives to Google Search 5. Use alternatives to YouTube 6. Use alternatives to Facebook and Twitter 7. Caution with Wikipedia 8. Web browser, email, and internet access 9. Access books and scientific papers 10. Access deleted web content"
  11. Franke, T.; Zoubir, M.: Technology for the people? : humanity as a compass for the digital transformation (2020) 0.00
    0.0027546415 = product of:
      0.03856498 = sum of:
        0.03856498 = weight(_text_:wide in 830) [ClassicSimilarity], result of:
          0.03856498 = score(doc=830,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=830)
      0.071428575 = coord(1/14)
    
    Abstract
    How do we define what technology is for humans? One perspective suggests that it is a tool enabling the use of valuable resources such as time, food, health and mobility. One could say that in its cultural history, humanity has developed a wide range of artefacts which enable the effective utilisation of these resources for the fulfilment of physiological, but also psychological, needs. This paper explores how this perspective may be used as an orientation for future technological innovation. Hence, the goal is to provide an accessible discussion of such a psychological perspective on technology development that could pave the way towards a truly human-centred digital transformation.
  12. Daquino, M.; Peroni, S.; Shotton, D.; Colavizza, G.; Ghavimi, B.; Lauscher, A.; Mayr, P.; Romanello, M.; Zumstein, P.: ¬The OpenCitations Data Model (2020) 0.00
    0.002588449 = product of:
      0.036238287 = sum of:
        0.036238287 = weight(_text_:web in 38) [ClassicSimilarity], result of:
          0.036238287 = score(doc=38,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.37471575 = fieldWeight in 38, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=38)
      0.071428575 = coord(1/14)
    
    Abstract
    A variety of schemas and ontologies are currently used for the machine-readable description of bibliographic entities and citations. This diversity, and the reuse of the same ontology terms with different nuances, generates inconsistencies in data. Adoption of a single data model would facilitate data integration tasks regardless of the data supplier or context application. In this paper we present the OpenCitations Data Model (OCDM), a generic data model for describing bibliographic entities and citations, developed using Semantic Web technologies. We also evaluate the effective reusability of OCDM according to ontology evaluation practices, mention existing users of OCDM, and discuss the use and impact of OCDM in the wider open science community.
    Content
    Erschienen in: The Semantic Web - ISWC 2020, 19th International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II. Vgl.: DOI: 10.1007/978-3-030-62466-8_28.
  13. Ogden, J.; Summers, E.; Walker, S.: Know(ing) Infrastructure : the wayback machine as object and instrument of digital research (2023) 0.00
    0.002490736 = product of:
      0.034870304 = sum of:
        0.034870304 = weight(_text_:web in 1084) [ClassicSimilarity], result of:
          0.034870304 = score(doc=1084,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.36057037 = fieldWeight in 1084, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1084)
      0.071428575 = coord(1/14)
    
    Abstract
    From documenting human rights abuses to studying online advertising, web archives are increasingly positioned as critical resources for a broad range of scholarly Internet research agendas. In this article, we reflect on the motivations and methodological challenges of investigating the world's largest web archive, the Internet Archive's Wayback Machine (IAWM). Using a mixed methods approach, we report on a pilot project centred around documenting the inner workings of 'Save Page Now' (SPN) - an Internet Archive tool that allows users to initiate the creation and storage of 'snapshots' of web resources. By improving our understanding of SPN and its role in shaping the IAWM, this work examines how the public tool is being used to 'save the Web' and highlights the challenges of operationalising a study of the dynamic sociotechnical processes supporting this knowledge infrastructure. Inspired by existing Science and Technology Studies (STS) approaches, the paper charts our development of methodological interventions to support an interdisciplinary investigation of SPN, including: ethnographic methods, 'experimental blackbox tactics', data tracing, modelling and documentary research. We discuss the opportunities and limitations of our methodology when interfacing with issues associated with temporality, scale and visibility, as well as critically engage with our own positionality in the research process (in terms of expertise and access). We conclude with reflections on the implications of digital STS approaches for 'knowing infrastructure', where the use of these infrastructures is unavoidably intertwined with our ability to study the situated and material arrangements of their creation.
  14. Williams, B.: Dimensions & VOSViewer bibliometrics in the reference interview (2020) 0.00
    0.0017435154 = product of:
      0.024409214 = sum of:
        0.024409214 = weight(_text_:web in 5719) [ClassicSimilarity], result of:
          0.024409214 = score(doc=5719,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25239927 = fieldWeight in 5719, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5719)
      0.071428575 = coord(1/14)
    
    Abstract
    The VOSviewer software provides easy access to bibliometric mapping using data from Dimensions, Scopus and Web of Science. The properly formatted and structured citation data, and the ease in which it can be exported open up new avenues for use during citation searches and eference interviews. This paper details specific techniques for using advanced searches in Dimensions, exporting the citation data, and drawing insights from the maps produced in VOS Viewer. These search techniques and data export practices are fast and accurate enough to build into reference interviews for graduate students, faculty, and post-PhD researchers. The search results derived from them are accurate and allow a more comprehensive view of citation networks embedded in ordinary complex boolean searches.
  15. Petras, V.: ¬The identity of information science (2023) 0.00
    0.0013482874 = product of:
      0.018876024 = sum of:
        0.018876024 = weight(_text_:information in 1077) [ClassicSimilarity], result of:
          0.018876024 = score(doc=1077,freq=28.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3628561 = fieldWeight in 1077, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1077)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose This paper offers a definition of the core of information science, which encompasses most research in the field. The definition provides a unique identity for information science and positions it in the disciplinary universe. Design/methodology/approach After motivating the objective, a definition of the core and an explanation of its key aspects are provided. The definition is related to other definitions of information science before controversial discourse aspects are briefly addressed: discipline vs. field, science vs. humanities, library vs. information science and application vs. theory. Interdisciplinarity as an often-assumed foundation of information science is challenged. Findings Information science is concerned with how information is manifested across space and time. Information is manifested to facilitate and support the representation, access, documentation and preservation of ideas, activities, or practices, and to enable different types of interactions. Research and professional practice encompass the infrastructures - institutions and technology -and phenomena and practices around manifested information across space and time as its core contribution to the scholarly landscape. Information science collaborates with other disciplines to work on complex information problems that need multi- and interdisciplinary approaches to address them. Originality/value The paper argues that new information problems may change the core of the field, but throughout its existence, the discipline has remained quite stable in its central focus, yet proved to be highly adaptive to the tremendous changes in the forms, practices, institutions and technologies around and for manifested information.
  16. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.00
    0.0012839122 = product of:
      0.01797477 = sum of:
        0.01797477 = weight(_text_:retrieval in 712) [ClassicSimilarity], result of:
          0.01797477 = score(doc=712,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 712, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
      0.071428575 = coord(1/14)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.
  17. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.00
    9.962944E-4 = product of:
      0.013948122 = sum of:
        0.013948122 = weight(_text_:web in 872) [ClassicSimilarity], result of:
          0.013948122 = score(doc=872,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.14422815 = fieldWeight in 872, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=872)
      0.071428575 = coord(1/14)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
  18. Rockelle Strader, C.: Cataloging to support information literacy : the IFLA Library Reference Model's user tasks in the context of the Framework for Information Literacy for Higher Education (2021) 0.00
    9.6690713E-4 = product of:
      0.013536699 = sum of:
        0.013536699 = weight(_text_:information in 713) [ClassicSimilarity], result of:
          0.013536699 = score(doc=713,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 713, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=713)
      0.071428575 = coord(1/14)
    
    Abstract
    Cataloging practices, as exemplified by the five user tasks of the IFLA Library Reference Model, can support information literacy practices. The six frames of the Framework for Information Literacy for Higher Education are used as lenses to examine the user tasks. Two themes emerge from this examination: context matters, and catalogers must tailor bibliographic descriptions to meet users' expectations and information needs. Catalogers need to solicit feedback from various user communities to reform cataloging practices to remain current and viable. Such conversations will enrich the catalog and enhance (reclaim?) its position as a primary tool for research and learning. Supplemental data for this article is available online at https://doi.org/10.1080/01639374.2021.1939828.
  19. Patriarca, S.: Information literacy gives us the tools to check sources and to verify factual statements : What does Popper`s "Es gibt keine Autoritäten" mean? (2021) 0.00
    7.2068995E-4 = product of:
      0.010089659 = sum of:
        0.010089659 = weight(_text_:information in 331) [ClassicSimilarity], result of:
          0.010089659 = score(doc=331,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 331, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=331)
      0.071428575 = coord(1/14)
    
    Abstract
    I wonder if you would consider an English perspective on the exchange between Bernd Jörs and Hermann Huemer. In my career in the independent education sector I can recall many discussions and Government reports about cross-curricular issues such as logical reasoning and critical thinking, In the IB system this led to the inclusion in the Diploma of "Theory of Knowledge." In the UK we had "key skills" and "critical thinking." One such key skill is what we now call "information literacy." "In his parody of Information literacy, Dr Jörs seems to have confused a necessary condition for a sufficient condition. The fact that information competence may be necessary for serious academic study does not of course make it sufficient. When that is understood the joke about the megalomaniac rather loses its force. (We had better pass over the rant which follows, the sneer at "earth sciences" and the German prejudice towards Austrians)."
  20. Hudon, M.: ¬The status of knowledge organization in library and information science master's programs (2021) 0.00
    7.134467E-4 = product of:
      0.009988253 = sum of:
        0.009988253 = weight(_text_:information in 697) [ClassicSimilarity], result of:
          0.009988253 = score(doc=697,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1920054 = fieldWeight in 697, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=697)
      0.071428575 = coord(1/14)
    
    Abstract
    The content of master's programs accredited by the American Library Association was examined to assess the status of knowledge organization (KO) as a subject in current training. Data collected show that KO remains very visible in a majority of programs, mainly in the form of required and electives courses focusing on descriptive cataloging, classification, and metadata. Observed tendencies include, however, the recent elimination of the required KO course in several programs, the reality that one third of KO electives listed in course catalogs have not been scheduled in the past three years, and the fact that two-thirds of those teaching KO specialize in other areas of information science.