Search (38 results, page 1 of 2)

  • × language_ss:"e"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Lavoie, B.; Connaway, L.S.; Dempsey, L.: Anatomy of aggregate collections : the example of Google print for libraries (2005) 0.06
    0.058687486 = product of:
      0.11737497 = sum of:
        0.11737497 = sum of:
          0.09682284 = weight(_text_:light in 1184) [ClassicSimilarity], result of:
            0.09682284 = score(doc=1184,freq=6.0), product of:
              0.2920221 = queryWeight, product of:
                5.7753086 = idf(docFreq=372, maxDocs=44218)
                0.050563898 = queryNorm
              0.33156 = fieldWeight in 1184, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                5.7753086 = idf(docFreq=372, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1184)
          0.02055213 = weight(_text_:22 in 1184) [ClassicSimilarity], result of:
            0.02055213 = score(doc=1184,freq=2.0), product of:
              0.17706616 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050563898 = queryNorm
              0.116070345 = fieldWeight in 1184, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1184)
      0.5 = coord(1/2)
    
    Abstract
    Google's December 2004 announcement of its intention to collaborate with five major research libraries - Harvard University, the University of Michigan, Stanford University, the University of Oxford, and the New York Public Library - to digitize and surface their print book collections in the Google searching universe has, predictably, stirred conflicting opinion, with some viewing the project as a welcome opportunity to enhance the visibility of library collections in new environments, and others wary of Google's prospective role as gateway to these collections. The project has been vigorously debated on discussion lists and blogs, with the participating libraries commonly referred to as "the Google 5". One point most observers seem to concede is that the questions raised by this initiative are both timely and significant. The Google Print Library Project (GPLP) has galvanized a long overdue, multi-faceted discussion about library print book collections. The print book is core to library identity and practice, but in an era of zero-sum budgeting, it is almost inevitable that print book budgets will decline as budgets for serials, digital resources, and other materials expand. As libraries re-allocate resources to accommodate changing patterns of user needs, print book budgets may be adversely impacted. Of course, the degree of impact will depend on a library's perceived mission. A public library may expect books to justify their shelf-space, with de-accession the consequence of minimal use. A national library, on the other hand, has a responsibility to the scholarly and cultural record and may seek to collect comprehensively within particular areas, with the attendant obligation to secure the long-term retention of its print book collections. The combination of limited budgets, changing user needs, and differences in library collection strategies underscores the need to think about a collective, or system-wide, print book collection - in particular, how can an inter-institutional system be organized to achieve goals that would be difficult, and/or prohibitively expensive, for any one library to undertake individually [4]? Mass digitization programs like GPLP cast new light on these and other issues surrounding the future of library print book collections, but at this early stage, it is light that illuminates only dimly. It will be some time before GPLP's implications for libraries and library print book collections can be fully appreciated and evaluated. But the strong interest and lively debate generated by this initiative suggest that some preliminary analysis - premature though it may be - would be useful, if only to undertake a rough mapping of the terrain over which GPLP potentially will extend. At the least, some early perspective helps shape interesting questions for the future, when the boundaries of GPLP become settled, workflows for producing and managing the digitized materials become systematized, and usage patterns within the GPLP framework begin to emerge.
    This article offers some perspectives on GPLP in light of what is known about library print book collections in general, and those of the Google 5 in particular, from information in OCLC's WorldCat bibliographic database and holdings file. Questions addressed include: * Coverage: What proportion of the system-wide print book collection will GPLP potentially cover? What is the degree of holdings overlap across the print book collections of the five participating libraries? * Language: What is the distribution of languages associated with the print books held by the GPLP libraries? Which languages are predominant? * Copyright: What proportion of the GPLP libraries' print book holdings are out of copyright? * Works: How many distinct works are represented in the holdings of the GPLP libraries? How does a focus on works impact coverage and holdings overlap? * Convergence: What are the effects on coverage of using a different set of five libraries? What are the effects of adding the holdings of additional libraries to those of the GPLP libraries, and how do these effects vary by library type? These questions certainly do not exhaust the analytical possibilities presented by GPLP. More in-depth analysis might look at Google 5 coverage in particular subject areas; it also would be interesting to see how many books covered by the GPLP have already been digitized in other contexts. However, these questions are left to future studies. The purpose here is to explore a few basic questions raised by GPLP, and in doing so, provide an empirical context for the debate that is sure to continue for some time to come. A secondary objective is to lay some groundwork for a general set of questions that could be used to explore the implications of any mass digitization initiative. A suggested list of questions is provided in the conclusion of the article.
    Date
    26.12.2011 14:08:22
  2. Popper, K.R.: Three worlds : the Tanner lecture on human values. Deliverd at the University of Michigan, April 7, 1978 (1978) 0.05
    0.053539254 = product of:
      0.10707851 = sum of:
        0.10707851 = product of:
          0.3212355 = sum of:
            0.3212355 = weight(_text_:3a in 230) [ClassicSimilarity], result of:
              0.3212355 = score(doc=230,freq=2.0), product of:
                0.42868128 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050563898 = queryNorm
                0.7493574 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0625 = fieldNorm(doc=230)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Source
    https%3A%2F%2Ftannerlectures.utah.edu%2F_documents%2Fa-to-z%2Fp%2Fpopper80.pdf&usg=AOvVaw3f4QRTEH-OEBmoYr2J_c7H
  3. Bianchini, C.; Guerrini, M.: ¬The international diffusion of RDA : a wide overview on the new guidelines (2016) 0.04
    0.03726713 = product of:
      0.07453426 = sum of:
        0.07453426 = product of:
          0.14906852 = sum of:
            0.14906852 = weight(_text_:light in 2944) [ClassicSimilarity], result of:
              0.14906852 = score(doc=2944,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.51047 = fieldWeight in 2944, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2944)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This issue of Jlis.it is focused on RDA, Resource Description and Access. In light of increasing international acceptance of this new cataloging content standard, the editors of Jlis.it wish to capture the background of how RDA came to be and the implications of its implementation at this time. This special issue offers a wide overview on the new guidelines from their making to their spreading around the world.
  4. Halpin, H.; Hayes, P.J.; McCusker, J.P.; McGuinness, D.L.; Thompson, H.S.: When owl:sameAs isn't the same : an analysis of identity in linked data (2010) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 4703) [ClassicSimilarity], result of:
              0.11180139 = score(doc=4703,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 4703, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In Linked Data, the use of owl:sameAs is ubiquitous in interlinking data-sets. There is however, ongoing discussion about its use, and potential misuse, particularly with regards to interactions with inference. In fact, owl:sameAs can be viewed as encoding only one point on a scale of similarity, one that is often too strong for many of its current uses. We describe how referentially opaque contexts that do not allow inference exist, and then outline some varieties of referentially-opaque alternatives to owl:sameAs. Finally, we report on an empirical experiment over randomly selected owl:sameAs statements from the Web of data. This theoretical apparatus and experiment shed light upon how owl:sameAs is being used (and misused) on the Web of data.
  5. Genetasio, G.: ¬The International Cataloguing Principles and their future", in: JLIS.it 3/1 (2012) (2012) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 2625) [ClassicSimilarity], result of:
              0.11180139 = score(doc=2625,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 2625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2625)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article aims to provide an update on the 2009 Statement of International Cataloguing Principles (ICP) and on the status of work on the Statement by the IFLA Cataloguing Section. The article begins with a summary of the drafting process of the ICP by the IME ICC, International Meeting of Experts on an International Cataloguing Code, focusing in particular on the first meeting (IME ICC1) and on the earlier drafts of the 2009 Statement. It then analyzes both the major innovations and the unsatisfactory aspects of the ICP. Finally, it explains and comments on the recent documents by the IFLA Cataloguing Section relating to the ICP, which express their intention to revise the Statement and to verify the convenience of drawing up an international cataloguing code. The latter intention is considered in detail and criticized by the author in the light of the recent publication of the RDA, Resource Description and Access. The article is complemented by an updated bibliography on the ICP.
  6. Lamb, I.; Larson, C.: Shining a light on scientific data : building a data catalog to foster data sharing and reuse (2016) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 3195) [ClassicSimilarity], result of:
              0.11180139 = score(doc=3195,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 3195, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3195)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  7. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.02422092 = product of:
      0.04844184 = sum of:
        0.04844184 = product of:
          0.09688368 = sum of:
            0.09688368 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.09688368 = score(doc=3925,freq=4.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:22:28
  8. Dunning, A.: Do we still need search engines? (1999) 0.02
    0.023977486 = product of:
      0.047954973 = sum of:
        0.047954973 = product of:
          0.095909946 = sum of:
            0.095909946 = weight(_text_:22 in 6021) [ClassicSimilarity], result of:
              0.095909946 = score(doc=6021,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.5416616 = fieldWeight in 6021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6021)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Ariadne. 1999, no.22
  9. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.02
    0.023291955 = product of:
      0.04658391 = sum of:
        0.04658391 = product of:
          0.09316782 = sum of:
            0.09316782 = weight(_text_:light in 1520) [ClassicSimilarity], result of:
              0.09316782 = score(doc=1520,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.31904373 = fieldWeight in 1520, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1520)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
  10. Frederick, D.E.: ChatGPT: a viral data-driven disruption in the information environment (2023) 0.02
    0.023291955 = product of:
      0.04658391 = sum of:
        0.04658391 = product of:
          0.09316782 = sum of:
            0.09316782 = weight(_text_:light in 983) [ClassicSimilarity], result of:
              0.09316782 = score(doc=983,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.31904373 = fieldWeight in 983, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=983)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study aims to introduce librarians to ChatGPT and challenge them to think about how it fits into their work and what learning they will need to do in order to stay relevant in the realm of artificial intelligence. Design/methodology/approach Popular and scientific media sources were monitored over the course of two months to gather current discussions about the uses of and opinions about ChatGPT. This was analyzed in light of historical developments in education and libraries. Additional sources of information on the topic were described and discussed so that the issue is made relevant to librarians and libraries. Findings The potential risks and benefits of ChatGPT are highly relevant for librarians but also currently not fully understood. We are in a very early stage of understanding and using this technology but it does appear to have the possibility of becoming disruptive to libraries as well as many other aspects of life. Originality/value ChatGPT-3 has only been publicly available since the end of November 2022. We are just now starting to take a deeper dive into what this technology means for libraries. This paper is one of the early ones that provide librarians with some direction in terms of where to focus their interest and attention in learning about it.
  11. Prokop, M.: Hans Jonas and the phenomenological continuity of life and mind (2022) 0.02
    0.023291955 = product of:
      0.04658391 = sum of:
        0.04658391 = product of:
          0.09316782 = sum of:
            0.09316782 = weight(_text_:light in 1048) [ClassicSimilarity], result of:
              0.09316782 = score(doc=1048,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.31904373 = fieldWeight in 1048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper offers a novel interpretation of Hans Jonas' analysis of metabolism, the centrepiece of Jonas' philosophy of organism, in relation to recent controversies regarding the phenomenological dimension of life-mind continuity as understood within 'autopoietic' enactivism (AE). Jonas' philosophy of organism chiefly inspired AE's development of what we might call 'the phenomenological life-mind continuity thesis' (PLMCT), the claim that certain phenomenological features of human experience are central to a proper scientific understanding of both life and mind, and as such central features of all living organisms. After discussing the understanding of PLMCT within AE, and recent criticisms thereof, I develop a reading of Jonas' analysis of metabolism, in light of previous commentators, which emphasizes its systematicity and transcendental flavour. The central thought is that, for Jonas, the attribution of certain phenomenological features is a necessary precondition for our understanding of the possibility of metabolism, rather than being derivable from metabolism itself. I argue that my interpretation strengthens Jonas' contribution to AE's justification for ascribing certain phenomenological features to life across the board. However, it also emphasises the need to complement Jonas' analysis with an explanatory account of organic identity in order to vindicate these phenomenological ascriptions in a scientific context.
  12. Qin, J.; Paling, S.: Converting a controlled vocabulary into an ontology : the case of GEM (2001) 0.02
    0.02055213 = product of:
      0.04110426 = sum of:
        0.04110426 = product of:
          0.08220852 = sum of:
            0.08220852 = weight(_text_:22 in 3895) [ClassicSimilarity], result of:
              0.08220852 = score(doc=3895,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.46428138 = fieldWeight in 3895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3895)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    24. 8.2005 19:20:22
  13. Patton, M.; Reynolds, D.; Choudhury, G.S.; DiLauro, T.: Toward a metadata generation framework : a case study at Johns Hopkins University (2004) 0.02
    0.018633565 = product of:
      0.03726713 = sum of:
        0.03726713 = product of:
          0.07453426 = sum of:
            0.07453426 = weight(_text_:light in 1192) [ClassicSimilarity], result of:
              0.07453426 = score(doc=1192,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.255235 = fieldWeight in 1192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1192)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the June 2003 issue of D-Lib Magazine, Kenney et al. (2003) discuss a comparative study between Cornell's email reference staff and Google's Answers service. This interesting study provided insights on the potential impact of "computing and simple algorithms combined with human intelligence" for library reference services. As mentioned in the Kenney et al. article, Bill Arms (2000) had discussed the possibilities of automated digital libraries in an even earlier D-Lib article. Arms discusses not only automating reference services, but also another library function that seems to inspire lively debates about automation-metadata creation. While intended to illuminate, these debates sometimes generate more heat than light. In an effort to explore the potential for automating metadata generation, the Digital Knowledge Center (DKC) of the Sheridan Libraries at The Johns Hopkins University developed and tested an automated name authority control (ANAC) tool. ANAC represents a component of a digital workflow management system developed in connection with the digital Lester S. Levy Collection of Sheet Music. The evaluation of ANAC followed the spirit of the Kenney et al. study that was, as they stated, "more exploratory than scientific." These ANAC evaluation results are shared with the hope of fostering constructive dialogue and discussions about the potential for semi-automated techniques or frameworks for library functions and services such as metadata creation. The DKC's research agenda emphasizes the development of tools that combine automated processes and human intervention, with the overall goal of involving humans at higher levels of analysis and decision-making. Others have looked at issues regarding the automated generation of metadata. A session at the 2003 Joint Conference on Digital Libraries was devoted to automatic metadata creation, and a session at the 2004 conference addressed automated name disambiguation. Commercial vendors such as OCLC, Marcive, and LTI have long used automated techniques for matching names to Library of Congress authority records. We began developing ANAC as a component of a larger suite of open source tools to support workflow management for digital projects. This article describes the goals for the ANAC tool, provides an overview of the metadata records used for testing, describes the architecture for ANAC, and concludes with discussions of the methodology and evaluation of the experiment comparing human cataloging and ANAC-generated results.
  14. Van de Sompel, H.; Hochstenbach, P.: Reference linking in a hybrid library environment : part 3: generalizing the SFX solution in the "SFX@Ghent & SFX@LANL" experiment (1999) 0.02
    0.018633565 = product of:
      0.03726713 = sum of:
        0.03726713 = product of:
          0.07453426 = sum of:
            0.07453426 = weight(_text_:light in 1243) [ClassicSimilarity], result of:
              0.07453426 = score(doc=1243,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.255235 = fieldWeight in 1243, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1243)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the third part of our papers about reference linking in a hybrid library environment. The first part described the state-of-the-art of reference linking and contrasted various approaches to the problem. It identified static and dynamic linking solutions, open and closed linking frameworks as well as just-in-case and just-in-time linking. The second part introduced SFX, a dynamic, just-in-time linking solution we built for our own purposes. However, we suggested that the underlying concepts were sufficiently generic to be applied in a wide range of digital libraries. In this third part we show how this has been demonstrated conclusively in the "SFX@Ghent & SFX@LANL" experiment. In this experiment, local as well as remote distributed information resources of the digital library collections of the Research Library of the Los Alamos National Laboratory and the University of Ghent Library have been used as starting points for SFX-links into other parts of the collections. The SFX-framework has further been generalized in order to achieve a technology that can easily be transferred from one digital library environment to another and that minimizes the overhead in making the distributed information services that make up those libraries interoperable with SFX. This third part starts with a presentation of the SFX problem statement in light of the recent discussions on reference linking. Next, it introduces the notion of global and local relevance of extended services as well as an architectural categorization of open linking frameworks, also referred to as frameworks that are supportive of selective resolution. Then, an in-depth description of the generalized SFX solution is given.
  15. Guidi, F.; Sacerdoti Coen, C.: ¬A survey on retrieval of mathematical knowledge (2015) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 5865) [ClassicSimilarity], result of:
              0.068507105 = score(doc=5865,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 5865, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5865)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2017 12:51:57
  16. Sojka, P.; Liska, M.: ¬The art of mathematics retrieval (2011) 0.02
    0.016954644 = product of:
      0.033909287 = sum of:
        0.033909287 = product of:
          0.067818575 = sum of:
            0.067818575 = weight(_text_:22 in 3450) [ClassicSimilarity], result of:
              0.067818575 = score(doc=3450,freq=4.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38301262 = fieldWeight in 3450, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3450)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Vgl.: DocEng2011, September 19-22, 2011, Mountain View, California, USA Copyright 2011 ACM 978-1-4503-0863-2/11/09
    Date
    22. 2.2017 13:00:42
  17. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.01
    0.014532552 = product of:
      0.029065104 = sum of:
        0.029065104 = product of:
          0.05813021 = sum of:
            0.05813021 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.05813021 = score(doc=1967,freq=4.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  18. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.01
    0.013701421 = product of:
      0.027402842 = sum of:
        0.027402842 = product of:
          0.054805685 = sum of:
            0.054805685 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.054805685 = score(doc=1149,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    17.12.2013 11:02:22
  19. Decimal Classification Editorial Policy Committee (2002) 0.01
    0.01211046 = product of:
      0.02422092 = sum of:
        0.02422092 = product of:
          0.04844184 = sum of:
            0.04844184 = weight(_text_:22 in 236) [ClassicSimilarity], result of:
              0.04844184 = score(doc=236,freq=4.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.27358043 = fieldWeight in 236, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=236)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Decimal Classification Editorial Policy Committee (EPC) held its Meeting 117 at the Library Dec. 3-5, 2001, with chair Andrea Stamm (Northwestern University) presiding. Through its actions at this meeting, significant progress was made toward publication of DDC unabridged Edition 22 in mid-2003 and Abridged Edition 14 in early 2004. For Edition 22, the committee approved the revisions to two major segments of the classification: Table 2 through 55 Iran (the first half of the geographic area table) and 900 History and geography. EPC approved updates to several parts of the classification it had already considered: 004-006 Data processing, Computer science; 340 Law; 370 Education; 510 Mathematics; 610 Medicine; Table 3 issues concerning treatment of scientific and technical themes, with folklore, arts, and printing ramifications at 398.2 - 398.3, 704.94, and 758; Table 5 and Table 6 Ethnic Groups and Languages (portions concerning American native peoples and languages); and tourism issues at 647.9 and 790. Reports on the results of testing the approved 200 Religion and 305-306 Social groups schedules were received, as was a progress report on revision work for the manual being done by Ross Trotter (British Library, retired). Revisions for Abridged Edition 14 that received committee approval included 010 Bibliography; 070 Journalism; 150 Psychology; 370 Education; 380 Commerce, communications, and transportation; 621 Applied physics; 624 Civil engineering; and 629.8 Automatic control engineering. At the meeting the committee received print versions of _DC&_ numbers 4 and 5. Primarily for the use of Dewey translators, these cumulations list changes, substantive and cosmetic, to DDC Edition 21 and Abridged Edition 13 for the period October 1999 - December 2001. EPC will hold its Meeting 118 at the Library May 15-17, 2002.
  20. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.011988743 = product of:
      0.023977486 = sum of:
        0.023977486 = product of:
          0.047954973 = sum of:
            0.047954973 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.047954973 = score(doc=759,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11. 5.2013 19:22:18

Years