Search (1370 results, page 1 of 69)

  • × language_ss:"e"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Reimer, Y.J.; Hagedal, M.; Wolf, P.; Bahls, B.: Turning the desktop inside-out : evaluating information access and management through a single interface (2011) 0.11
    0.11162059 = product of:
      0.16743088 = sum of:
        0.04816959 = weight(_text_:wide in 4937) [ClassicSimilarity], result of:
          0.04816959 = score(doc=4937,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 4937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4937)
        0.045263432 = weight(_text_:web in 4937) [ClassicSimilarity], result of:
          0.045263432 = score(doc=4937,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 4937, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4937)
        0.03276989 = weight(_text_:computer in 4937) [ClassicSimilarity], result of:
          0.03276989 = score(doc=4937,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 4937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4937)
        0.04122796 = product of:
          0.08245592 = sum of:
            0.08245592 = weight(_text_:programs in 4937) [ClassicSimilarity], result of:
              0.08245592 = score(doc=4937,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.32024145 = fieldWeight in 4937, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4937)
          0.5 = coord(1/2)
      0.6666667 = coord(4/6)
    
    Abstract
    Computer users today rely on a wide variety of software tools to manage an ever-increasing amount of information and resources. We developed the Global Information Gatherer (GIG) system to help students in higher education manage, understand, and keep their academic work. GIG provides a comprehensive, integrative interface through which students can access commonly used programs and simultaneously record notes and organize files. This article presents an overview of the GIG program before describing a large-scale, longitudinal, and unrestricted evaluation of its use. We investigate how such a program is received by nontechnical users, which features prove most helpful to students as they work to complete their everyday tasks, how it compares to other software solutions, and whether it helps with information assimilation and management tasks. Results of our study indicate that participants have a strong preference for software that minimizes program window manipulation, facilitates information consolidation and organization, provides citation support and integrated web browsing, and incorporates a progressive user interface design. When comparing GIG to their normal way of accomplishing tasks, students gave particularly high marks for its ability to save materials from the web, gather sources for academic research, manage windows, and copy/paste from the web. On the third and final survey of our evaluation, we learned that a majority (>70%) of remaining participants believed that GIG was helpful for managing and making sense of the large volume of information to which they are exposed everyday, and over half (55%) said they would continue using the software if it was freely available.
  2. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.09
    0.094059676 = product of:
      0.28217903 = sum of:
        0.07054476 = product of:
          0.21163426 = sum of:
            0.21163426 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.21163426 = score(doc=400,freq=2.0), product of:
                0.37656134 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.044416238 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.21163426 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.21163426 = score(doc=400,freq=2.0), product of:
            0.37656134 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.044416238 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.33333334 = coord(2/6)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  3. Soergel, D.: Unleashing the power of data through organization : structure and connections for meaning, learning and discovery (2015) 0.09
    0.085723795 = product of:
      0.17144759 = sum of:
        0.026132854 = weight(_text_:web in 2376) [ClassicSimilarity], result of:
          0.026132854 = score(doc=2376,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 2376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2376)
        0.03276989 = weight(_text_:computer in 2376) [ClassicSimilarity], result of:
          0.03276989 = score(doc=2376,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 2376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2376)
        0.11254485 = sum of:
          0.08245592 = weight(_text_:programs in 2376) [ClassicSimilarity], result of:
            0.08245592 = score(doc=2376,freq=2.0), product of:
              0.25748047 = queryWeight, product of:
                5.79699 = idf(docFreq=364, maxDocs=44218)
                0.044416238 = queryNorm
              0.32024145 = fieldWeight in 2376, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.79699 = idf(docFreq=364, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2376)
          0.030088935 = weight(_text_:22 in 2376) [ClassicSimilarity], result of:
            0.030088935 = score(doc=2376,freq=2.0), product of:
              0.1555381 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044416238 = queryNorm
              0.19345059 = fieldWeight in 2376, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2376)
      0.5 = coord(3/6)
    
    Abstract
    Knowledge organization is needed everywhere. Its importance is marked by its pervasiveness. This paper will show many areas, tasks, and functions where proper use of knowledge organization, construed as broadly as the term implies, provides support for learning and understanding, for sense making and meaning making, for inference, and for discovery by people and computer programs and thereby will make the world a better place. The paper focuses not on metadata but rather on structuring and representing the actual data or knowledge itself and argues for more communication between the largely separated KO, ontology, data modeling, and semantic web communities to address the many problems that need better solutions. In particular, the paper discusses the application of knowledge organization in knowledge bases for question answering and cognitive systems, knowledge bases for information extraction from text or multimedia, linked data, big data and data analytics, electronic health records as one example, influence diagrams (causal maps), dynamic system models, process diagrams, concept maps, and other node-link diagrams, information systems in organizations, knowledge organization for understanding and learning, and knowledge transfer between domains. The paper argues for moving beyond triples to a more powerful representation using entities and multi-way relationships but not attributes.
    Date
    27.11.2015 20:52:22
  4. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.08
    0.08477179 = product of:
      0.16954358 = sum of:
        0.07391487 = weight(_text_:web in 2090) [ClassicSimilarity], result of:
          0.07391487 = score(doc=2090,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5099235 = fieldWeight in 2090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=2090)
        0.06553978 = weight(_text_:computer in 2090) [ClassicSimilarity], result of:
          0.06553978 = score(doc=2090,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 2090, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=2090)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.06017787 = score(doc=2090,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Theme
    Semantic Web
  5. Vert, S.: Extensions of Web browsers useful to knowledge workers (2012) 0.08
    0.079459615 = product of:
      0.15891923 = sum of:
        0.07012181 = weight(_text_:web in 103) [ClassicSimilarity], result of:
          0.07012181 = score(doc=103,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.48375595 = fieldWeight in 103, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=103)
        0.039323866 = weight(_text_:computer in 103) [ClassicSimilarity], result of:
          0.039323866 = score(doc=103,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 103, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=103)
        0.049473554 = product of:
          0.09894711 = sum of:
            0.09894711 = weight(_text_:programs in 103) [ClassicSimilarity], result of:
              0.09894711 = score(doc=103,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38428974 = fieldWeight in 103, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.046875 = fieldNorm(doc=103)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    This chapter focuses on the Internet working environment of Knowledge Workers through the customization of the Web browser on their computer. Given that a Web browser is designed to be used by anyone browsing the Internet, its initial configuration must meet generic needs such as reading a Web page, searching for information, and bookmarking. In the absence of a universal solution that meets the specific needs of each user, browser developers offer additional programs known as extensions, or add-ons. Among the various browsers that can be modified with add-ons, Mozilla's Firefox is perhaps the one that first springs to mind; indeed, Mozilla has built the Firefox brand around these extensions. Using this example, and also considering the browsers Google Chrome, Internet Explorer, Opera and Safari, the author will attempt to demonstrate the potential of Web browsers in terms of the resources they can offer when they are customizable and available within the working environment of a Knowledge Worker.
  6. Daudaravicius, V.: ¬A framework for keyphrase extraction from scientific journals (2016) 0.07
    0.074950635 = product of:
      0.14990127 = sum of:
        0.067437425 = weight(_text_:wide in 2930) [ClassicSimilarity], result of:
          0.067437425 = score(doc=2930,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
        0.036585998 = weight(_text_:web in 2930) [ClassicSimilarity], result of:
          0.036585998 = score(doc=2930,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
        0.04587784 = weight(_text_:computer in 2930) [ClassicSimilarity], result of:
          0.04587784 = score(doc=2930,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
      0.5 = coord(3/6)
    
    Abstract
    We present a framework for keyphrase extraction from scientific journals in diverse research fields. While journal articles are often provided with manually assigned keywords, it is not clear how to automatically extract keywords and measure their significance for a set of journal articles. We compare extracted keyphrases from journals in the fields of astrophysics, mathematics, physics, and computer science. We show that the presented statistics-based framework is able to demonstrate differences among journals, and that the extracted keyphrases can be used to represent journal or conference research topics, dynamics, and specificity.
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  7. Gayo, J.E.L.; Farham, H.; Fernández, J.C.; Rodríguez , J.M.A.: Representing statistical indexes as linked data including metadata about their computation process (2014) 0.07
    0.066602595 = product of:
      0.13320519 = sum of:
        0.04816959 = weight(_text_:wide in 1570) [ClassicSimilarity], result of:
          0.04816959 = score(doc=1570,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 1570, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1570)
        0.052265707 = weight(_text_:web in 1570) [ClassicSimilarity], result of:
          0.052265707 = score(doc=1570,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 1570, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1570)
        0.03276989 = weight(_text_:computer in 1570) [ClassicSimilarity], result of:
          0.03276989 = score(doc=1570,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 1570, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1570)
      0.5 = coord(3/6)
    
    Abstract
    In this paper we describe the development of the Web Index linked data portal that represents statistical index data and the computations from which it has been obtained. The Web Index is a multi-dimensional measure of the World Wide Web's contribution to development and human rights globally. It covers 81 countries and incorporates indicators that assess several areas like universal access; freedom and openness; relevant content; and empowerment. In order to empower the Web Index transparency, we established as an internal requirement that every published data could be externally verified. The verification could be that it was just raw data obtained from a secondary source, in which case, the system must provide a link to that data source or that the value has been internally computed, in which case, the system provides links to the values from which it has been calculated. The resulting portal contains data that can be tracked to its sources so an external agent can validate the whole index computation process. We describe the different aspects involved in the development of the WebIndex data portal that also offers new linked data visualization tools. Although in this paper we concentrate on the Web Index development, this approach can be generalized to other projects which involve the publication of externally verifiable computations.
    Series
    Communications in computer and information science; 478
  8. Soergel, D.: Towards a relation ontology for the Semantic Web (2011) 0.07
    0.06657317 = product of:
      0.13314635 = sum of:
        0.04434892 = weight(_text_:web in 4342) [ClassicSimilarity], result of:
          0.04434892 = score(doc=4342,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 4342, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4342)
        0.039323866 = weight(_text_:computer in 4342) [ClassicSimilarity], result of:
          0.039323866 = score(doc=4342,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 4342, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4342)
        0.049473554 = product of:
          0.09894711 = sum of:
            0.09894711 = weight(_text_:programs in 4342) [ClassicSimilarity], result of:
              0.09894711 = score(doc=4342,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38428974 = fieldWeight in 4342, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4342)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    The Semantic Web consists of data structured for use by computer programs, such as data sets made available under the Linked Open Data initiative. Much of this data is structured following the entity-relationship model encoded in RDF for syntactic interoperability. For semantic interoperability, the semantics of the relationships used in any given dataset needs to be made explicit. Ultimately this requires an inventory of these relationships structured around a relation ontology. This talk will outline a blueprint for such an inventory, including a format for the description/definition of binary and n-ary relations, drawing on ideas put forth in the classification and thesaurus community over the last 60 years, upper level ontologies, systems like FrameNet, the Buffalo Relation Ontology, and an analysis of linked data sets.
  9. Tré, G. de; Acker, W. van: Spaces of information modeling, action, and decision making (2012) 0.07
    0.06553078 = product of:
      0.13106155 = sum of:
        0.04816959 = weight(_text_:wide in 5557) [ClassicSimilarity], result of:
          0.04816959 = score(doc=5557,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 5557, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5557)
        0.026132854 = weight(_text_:web in 5557) [ClassicSimilarity], result of:
          0.026132854 = score(doc=5557,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 5557, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5557)
        0.05675911 = weight(_text_:computer in 5557) [ClassicSimilarity], result of:
          0.05675911 = score(doc=5557,freq=6.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.34967512 = fieldWeight in 5557, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5557)
      0.5 = coord(3/6)
    
    Abstract
    Nowadays, tremendous information sources are preserved, ranging from those of a traditional nature like libraries and museums to new formats like electronic databases and the World Wide Web. Making these sources consistent, easily accessible, and as complete as possible is challenging. Almost a century ago, people like Paul Otlet were already fully aware of this need and tried to develop ways of making human knowledge more accessible using the resources and technology available at that time. Otlet's ideas about a Universal Network of Documentation and the Universal Book are clear examples of such efforts. Computer science currently provides the means to build digital spaces that consist of (multimedia) information sources connected through the Internet. In this article, we give a nontechnical overview of the current state of the art in information management. Next, we focus on those aspects of Otlet's work that deal with the organization of knowledge and information sources. Then we study the potential connections between Otlet's work and the state of the art of computerized information management from a computer scientist's point of view. Finally, we consider some of the problems and challenges that information management still faces today and what computer science professionals have in common with, and can still learn from, Otlet and his work.
  10. Kaminski, R.; Schaub, T.; Wanko, P.: ¬A tutorial on hybrid answer set solving with clingo (2017) 0.06
    0.06313178 = product of:
      0.12626356 = sum of:
        0.052265707 = weight(_text_:web in 3937) [ClassicSimilarity], result of:
          0.052265707 = score(doc=3937,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 3937, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3937)
        0.03276989 = weight(_text_:computer in 3937) [ClassicSimilarity], result of:
          0.03276989 = score(doc=3937,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 3937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3937)
        0.04122796 = product of:
          0.08245592 = sum of:
            0.08245592 = weight(_text_:programs in 3937) [ClassicSimilarity], result of:
              0.08245592 = score(doc=3937,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.32024145 = fieldWeight in 3937, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3937)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Answer Set Programming (ASP) has become an established paradigm for Knowledge Representation and Reasoning, in particular, when it comes to solving knowledge-intense combinatorial (optimization) problems. ASP's unique pairing of a simple yet rich modeling language with highly performant solving technology has led to an increasing interest in ASP in academia as well as industry. To further boost this development and make ASP fit for real world applications it is indispensable to equip it with means for an easy integration into software environments and for adding complementary forms of reasoning. In this tutorial, we describe how both issues are addressed in the ASP system clingo. At first, we outline features of clingo's application programming interface (API) that are essential for multi-shot ASP solving, a technique for dealing with continuously changing logic programs. This is illustrated by realizing two exemplary reasoning modes, namely branch-and-bound-based optimization and incremental ASP solving. We then switch to the design of the API for integrating complementary forms of reasoning and detail this in an extensive case study dealing with the integration of difference constraints. We show how the syntax of these constraints is added to the modeling language and seamlessly merged into the grounding process. We then develop in detail a corresponding theory propagator for difference constraints and present how it is integrated into clingo's solving process.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  11. Vaughan, L.; Ninkov, A.: ¬A new approach to web co-link analysis (2018) 0.06
    0.063101456 = product of:
      0.12620291 = sum of:
        0.04816959 = weight(_text_:wide in 4256) [ClassicSimilarity], result of:
          0.04816959 = score(doc=4256,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 4256, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4256)
        0.045263432 = weight(_text_:web in 4256) [ClassicSimilarity], result of:
          0.045263432 = score(doc=4256,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 4256, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4256)
        0.03276989 = weight(_text_:computer in 4256) [ClassicSimilarity], result of:
          0.03276989 = score(doc=4256,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 4256, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4256)
      0.5 = coord(3/6)
    
    Abstract
    Numerous web co-link studies have analyzed a wide variety of websites ranging from those in the academic and business arena to those dealing with politics and governments. Such studies uncover rich information about these organizations. In recent years, however, there has been a dearth of co-link analysis, mainly due to the lack of sources from which co-link data can be collected directly. Although several commercial services such as Alexa provide inlink data, none provide co-link data. We propose a new approach to web co-link analysis that can alleviate this problem so that researchers can continue to mine the valuable information contained in co-link data. The proposed approach has two components: (a) generating co-link data from inlink data using a computer program; (b) analyzing co-link data at the site level in addition to the page level that previous co-link analyses have used. The site-level analysis has the potential of expanding co-link data sources. We tested this proposed approach by analyzing a group of websites focused on vaccination using Moz inlink data. We found that the approach is feasible, as we were able to generate co-link data from inlink data and analyze the co-link data with multidimensional scaling.
  12. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.06
    0.06254284 = product of:
      0.12508568 = sum of:
        0.067437425 = weight(_text_:wide in 632) [ClassicSimilarity], result of:
          0.067437425 = score(doc=632,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.036585998 = weight(_text_:web in 632) [ClassicSimilarity], result of:
          0.036585998 = score(doc=632,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.04212451 = score(doc=632,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Date
    22. 2.2013 11:31:25
  13. Das, A.K.; Mishra, S.: S R Ranganathan in Google Scholar and other citation databases (2015) 0.06
    0.058948457 = product of:
      0.117896914 = sum of:
        0.04816959 = weight(_text_:wide in 2797) [ClassicSimilarity], result of:
          0.04816959 = score(doc=2797,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 2797, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2797)
        0.036957435 = weight(_text_:web in 2797) [ClassicSimilarity], result of:
          0.036957435 = score(doc=2797,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 2797, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2797)
        0.03276989 = weight(_text_:computer in 2797) [ClassicSimilarity], result of:
          0.03276989 = score(doc=2797,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 2797, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2797)
      0.5 = coord(3/6)
    
    Abstract
    This paper analyses the scholarly contribution of S R Ranganathan as reflected in Google Scholar Citations, Web of Science, and Scopus. This paper also identifies popularity of his published works, particularly which are highly referred by the researchers and LIS curriculum designers. His top three highly cited books are namely Prolegomena to Library Classification, The Five Laws of Library Science, and Colon Classification. His top three highly referred journal articles are titled "Hidden Roots of Classification", "Subject Heading and Facet Analysis", and "Colon Classification Edition 7 (1971): A Preview". This paper identifies the articles that cited his works extensively and got considerable citations from the other researchers. Top citing journal articles are namely "The Need for a Faceted Classification as the Basis of All Methods of Information Retrieval", "Ranganathan and the Net: Using Facet Analysis to Search and Organise the World Wide Web" and "Grounded Classification: Grounded Theory and Faceted Classification". These citing articles also indicate that Ranganathan is very relevant to today's researchers in interdisciplinary areas, particularly which belong to the fields of computer applications and information systems.
  14. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.06
    0.057354555 = product of:
      0.11470911 = sum of:
        0.04816959 = weight(_text_:wide in 1291) [ClassicSimilarity], result of:
          0.04816959 = score(doc=1291,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 1291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.045263432 = weight(_text_:web in 1291) [ClassicSimilarity], result of:
          0.045263432 = score(doc=1291,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 1291, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.02127609 = product of:
          0.04255218 = sum of:
            0.04255218 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.04255218 = score(doc=1291,freq=4.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
    Object
    Web of Science
  15. Joint, N.: Web 2.0 and the library : a transformational technology? (2010) 0.05
    0.05485157 = product of:
      0.10970314 = sum of:
        0.03853567 = weight(_text_:wide in 4202) [ClassicSimilarity], result of:
          0.03853567 = score(doc=4202,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 4202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4202)
        0.059131898 = weight(_text_:web in 4202) [ClassicSimilarity], result of:
          0.059131898 = score(doc=4202,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 4202, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4202)
        0.012035574 = product of:
          0.024071148 = sum of:
            0.024071148 = weight(_text_:22 in 4202) [ClassicSimilarity], result of:
              0.024071148 = score(doc=4202,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.15476047 = fieldWeight in 4202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4202)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Purpose - This paper is the final one in a series which has tried to give an overview of so-called transformational areas of digital library technology. The aim has been to assess how much real transformation these applications can bring about, in terms of creating genuine user benefit and also changing everyday library practice. Design/methodology/approach - The paper provides a summary of some of the legal and ethical issues associated with web 2.0 applications in libraries, associated with a brief retrospective view of some relevant literature. Findings - Although web 2.0 innovations have had a massive impact on the larger World Wide Web, the practical impact on library service delivery has been limited to date. What probably can be termed transformational in the effect of web 2.0 developments on library and information work is their effect on some underlying principles of professional practice. Research limitations/implications - The legal and ethical challenges of incorporating web 2.0 platforms into mainstream institutional service delivery need to be subject to further research, so that the risks associated with these innovations are better understood at the strategic and policy-making level. Practical implications - This paper makes some recommendations about new principles of library and information practice which will help practitioners make better sense of these innovations in their overall information environment. Social implications - The paper puts in context some of the more problematic social impacts of web 2.0 innovations, without denying the undeniable positive contribution of social networking to the sphere of human interactivity. Originality/value - This paper raises some cautionary points about web 2.0 applications without adopting a precautionary approach of total prohibition. However, none of the suggestions or analysis in this piece should be considered to constitute legal advice. If such advice is required, the reader should consult appropriate legal professionals.
    Date
    22. 1.2011 17:54:04
  16. Das, S.; Roy, S.: Faceted ontological model for brain tumour study (2016) 0.05
    0.054778837 = product of:
      0.10955767 = sum of:
        0.04816959 = weight(_text_:wide in 2831) [ClassicSimilarity], result of:
          0.04816959 = score(doc=2831,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 2831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2831)
        0.04634362 = weight(_text_:computer in 2831) [ClassicSimilarity], result of:
          0.04634362 = score(doc=2831,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28550854 = fieldWeight in 2831, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2831)
        0.0150444675 = product of:
          0.030088935 = sum of:
            0.030088935 = weight(_text_:22 in 2831) [ClassicSimilarity], result of:
              0.030088935 = score(doc=2831,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.19345059 = fieldWeight in 2831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2831)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    The purpose of this work is to develop an ontology-based framework for developing an information retrieval system to cater to specific queries of users. For creating such an ontology, information was obtained from a wide range of information sources involved with brain tumour study and research. The information thus obtained was compiled and analysed to provide a standard, reliable and relevant information base to aid our proposed system. Facet-based methodology has been used for ontology formalization for quite some time. Ontology formalization involves different steps such as identification of the terminology, analysis, synthesis, standardization and ordering. A vast majority of the ontologies being developed nowadays lack flexibility. This becomes a formidable constraint when it comes to interoperability. We found that a facet-based method provides a distinct guideline for the development of a robust and flexible model concerning the domain of brain tumours. Our attempt has been to bridge library and information science and computer science, which itself involved an experimental approach. It was discovered that a faceted approach is really enduring, as it helps in the achievement of properties like navigation, exploration and faceted browsing. Computer-based brain tumour ontology supports the work of researchers towards gathering information on brain tumour research and allows users across the world to intelligently access new scientific information quickly and efficiently.
    Date
    12. 3.2016 13:21:22
  17. Yang, S.; Han, R.; Ding, J.; Song, Y.: ¬The distribution of Web citations (2012) 0.05
    0.0547482 = product of:
      0.16424459 = sum of:
        0.108632244 = weight(_text_:web in 2735) [ClassicSimilarity], result of:
          0.108632244 = score(doc=2735,freq=24.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.7494315 = fieldWeight in 2735, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
        0.05561234 = weight(_text_:computer in 2735) [ClassicSimilarity], result of:
          0.05561234 = score(doc=2735,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.34261024 = fieldWeight in 2735, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
      0.33333334 = coord(2/6)
    
    Abstract
    A substantial amount of research has focused on the persistence or availability of Web citations. The present study analyzes Web citation distributions. Web citations are defined as the mentions of the URLs of Web pages (Web resources) as references in academic papers. The present paper primarily focuses on the analysis of the URLs of Web citations and uses three sets of data, namely, Set 1 from the Humanities and Social Science Index in China (CSSCI, 1998-2009), Set 2 from the publications of two international computer science societies, Communications of the ACM and IEEE Computer (1995-1999), and Set 3 from the medical science database, MEDLINE, of the National Library of Medicine (1994-2006). Web citation distributions are investigated based on Web site types, Web page types, URL frequencies, URL depths, URL lengths, and year of article publication. Results show significant differences in the Web citation distributions among the three data sets. However, when the URLs of Web citations with the same hostnames are aggregated, the distributions in the three data sets are consistent with the power law (the Lotka function).
  18. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.05
    0.05187861 = product of:
      0.15563582 = sum of:
        0.10975798 = weight(_text_:web in 3939) [ClassicSimilarity], result of:
          0.10975798 = score(doc=3939,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.75719774 = fieldWeight in 3939, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
        0.04587784 = weight(_text_:computer in 3939) [ClassicSimilarity], result of:
          0.04587784 = score(doc=3939,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 3939, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
      0.33333334 = coord(2/6)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  19. Hypén, K.; Mäkelä, E.: ¬An ideal model for an information system for fiction and its application : Kirjasampo and Semantic Web (2011) 0.05
    0.050733075 = product of:
      0.10146615 = sum of:
        0.033718713 = weight(_text_:wide in 4550) [ClassicSimilarity], result of:
          0.033718713 = score(doc=4550,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.171337 = fieldWeight in 4550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4550)
        0.04480851 = weight(_text_:web in 4550) [ClassicSimilarity], result of:
          0.04480851 = score(doc=4550,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3091247 = fieldWeight in 4550, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4550)
        0.02293892 = weight(_text_:computer in 4550) [ClassicSimilarity], result of:
          0.02293892 = score(doc=4550,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.14131951 = fieldWeight in 4550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4550)
      0.5 = coord(3/6)
    
    Abstract
    Purpose - Library Director Jarmo Saarti introduced a wide or ideal model for fiction in literature in his dissertation, published in 1999. It introduces those aspects that should be included in an information system for fiction. Such aspects include literary prose and its intertextual references to other works, the writer, readers' and critics' receptions of the work as well as a researcher's view. It is also important to note how libraries approach a literary work by means of inventory, classification and content description. The most ambiguous of the aspects relates to that context in cultural history, which the work reflects and is a part of. The paper aims to discuss these issues. Design/methodology/approach - Since the model consists of several components which are not found in present library information systems and cannot be implemented by them, a new way had to be found to produce, save, process and present fiction-related metadata. The Semantic Computing Research Group of Aalto University has developed several Semantic Web services for use in the field of culture, so cooperation with it and the use of Semantic Web tools were a natural starting point for the construction of the new service. Kirjasampo will be based on the Semantic Web RDF data model. The model enables a flexible linking of metadata derived from different sources, and it can be used to build a Semantic Web that can be approached contextually from different angles. Findings - The "semantically enriched" ideal model for fiction has hence been realised, at least to some extent: Kirjasampo supports literature-related metadata that is more varied than earlier and aims to account for different contexts within literature and connections with regard to other cultural phenomena. It also includes contemporary reviews of works and, as such, readers' receptions as well. Modern readers can share their views on works, once the user interface of the server is completed. It will include several features from the Kirjasto 2.0-application, which enables the evaluation, description and recommendations of works. The service should be online by the end of Spring 2011. Research limitations/implications - The project involves novel collaboration between a public library and a computer science research unit, and utilises a novel approach to the description of fiction. Practical implications - The system encourages user participation in the description of fiction and is of practical benefit to librarians in understanding both how fiction is organised and how users interpret the same. Originality/value - Upon completion, the service will be the first Finnish information system for libraries built with the tools of the Semantic Web which offers a completely new user environment and application for data produced by libraries. It also strives to create a new model for saving and producing data, available to both library professionals and readers. The aim is to save, accumulate and distribute literary knowledge, experiences and silent information.
  20. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.05
    0.050085746 = product of:
      0.10017149 = sum of:
        0.04816959 = weight(_text_:wide in 3739) [ClassicSimilarity], result of:
          0.04816959 = score(doc=3739,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 3739, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.036957435 = weight(_text_:web in 3739) [ClassicSimilarity], result of:
          0.036957435 = score(doc=3739,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 3739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.0150444675 = product of:
          0.030088935 = sum of:
            0.030088935 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.030088935 = score(doc=3739,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly

Types

  • el 77
  • b 4
  • s 1
  • x 1
  • More… Less…

Themes

Classifications