Search (103 results, page 1 of 6)

  • × language_ss:"e"
  • × type_ss:"el"
  • × year_i:[1990 TO 2000}
  1. Chernobyl : ten years after (1996) 0.04
    0.03977262 = product of:
      0.059658926 = sum of:
        0.0075084865 = weight(_text_:a in 7857) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=7857,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 7857, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=7857)
        0.05215044 = product of:
          0.10430088 = sum of:
            0.10430088 = weight(_text_:de in 7857) [ClassicSimilarity], result of:
              0.10430088 = score(doc=7857,freq=4.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.53718615 = fieldWeight in 7857, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7857)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The 3 institutes have summarised the current knowledge about the course of the accident of Chernobyl, its causes and consequences. The CD contains a survey of the situation at the Chernobyl site and explains the functioning and the safety features of the RBMK-type reactors that are still being operated there. The CD also contains a set of hitherto unpublished photographic material of the RRC KI, most of it taken at the Chernobyl site shortly after the accident
    Editor
    Gesellschaft für Anlagen- und Reaktorsicherheit; Institut de Protection et de Sûreté Nucléaire; Russian Research Centre 'Kurchatov Institute' (RRC KI)
  2. Dunning, A.: Do we still need search engines? (1999) 0.04
    0.037325956 = product of:
      0.05598893 = sum of:
        0.013139851 = weight(_text_:a in 6021) [ClassicSimilarity], result of:
          0.013139851 = score(doc=6021,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25222903 = fieldWeight in 6021, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=6021)
        0.04284908 = product of:
          0.08569816 = sum of:
            0.08569816 = weight(_text_:22 in 6021) [ClassicSimilarity], result of:
              0.08569816 = score(doc=6021,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.5416616 = fieldWeight in 6021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6021)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Ariadne. 1999, no.22
    Type
    a
  3. Birmingham, J.: Internet search engines (1996) 0.03
    0.029794488 = product of:
      0.04469173 = sum of:
        0.007963953 = weight(_text_:a in 5664) [ClassicSimilarity], result of:
          0.007963953 = score(doc=5664,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 5664, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=5664)
        0.03672778 = product of:
          0.07345556 = sum of:
            0.07345556 = weight(_text_:22 in 5664) [ClassicSimilarity], result of:
              0.07345556 = score(doc=5664,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.46428138 = fieldWeight in 5664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5664)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Basically a good listing in table format of features from the major search engines
    Date
    10.11.1996 16:36:22
  4. Van de Sompel, H.; Hochstenbach, P.: Reference linking in a hybrid library environment : part 2: SFX, a generic linking solution (1999) 0.02
    0.022360591 = product of:
      0.033540886 = sum of:
        0.010493428 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
          0.010493428 = score(doc=1241,freq=20.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20142901 = fieldWeight in 1241, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1241)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 1241) [ClassicSimilarity], result of:
              0.046094913 = score(doc=1241,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 1241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This is the second part of two articles about reference linking in hybrid digital libraries. The first part, Frameworks for Linking described the current state-of-the-art and contrasted various approaches to the problem. It identified static and dynamic linking solutions, as well as open and closed linking frameworks. It also included an extensive bibliography. The second part describes our work at the University of Ghent to address these issues. SFX is a generic linking system that we have developed for our own needs, but its underlying concepts can be applied in a wide range of digital libraries. This is a description of the approach to the creation of extended services in a hybrid library environment that has been taken by the Library Automation team at the University of Ghent. The ongoing research has been grouped under the working title Special Effects (SFX). In order to explain the SFX-concepts in a comprehensive way, the discussion will start with a brief description of pre-SFX experiments. Thereafter, the basics of the SFX-approach are explained briefly, in combination with concrete implementation choices taken for the Elektron SFX-linking experiment. Elektron was the name of a modest digital library collaboration between the Universities of Ghent, Louvain and Antwerp.
    Type
    a
  5. Priss, U.: Description logic and faceted knowledge representation (1999) 0.02
    0.020637337 = product of:
      0.030956004 = sum of:
        0.0125921145 = weight(_text_:a in 2655) [ClassicSimilarity], result of:
          0.0125921145 = score(doc=2655,freq=20.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.24171482 = fieldWeight in 2655, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.03672778 = score(doc=2655,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
    Type
    a
  6. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 2654) [ClassicSimilarity], result of:
          0.009291277 = score(doc=2654,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 2654, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04284908 = score(doc=2654,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
    Type
    a
  7. Electronic Dewey (1993) 0.02
    0.019862993 = product of:
      0.029794488 = sum of:
        0.0053093014 = weight(_text_:a in 1088) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=1088,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 1088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1088)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.048970375 = score(doc=1088,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The CD-ROM version of the 20th DDC ed., featuring advanced online search and windowing techniques, full-text indexing, personal notepad, LC subject headings linked to DDC numbers and a database of all DDC changes
    Footnote
    Rez. in: Cataloging and classification quarterly 19(1994) no.1, S.134-137 (M. Carpenter). - Inzwischen existiert auch eine Windows-Version: 'Electronic Dewey for Windows', vgl. Knowledge organization 22(1995) no.1, S.17
  8. Van de Sompel, H.; Hochstenbach, P.: Reference linking in a hybrid library environment : part 1: frameworks for linking (1999) 0.02
    0.01760128 = product of:
      0.026401918 = sum of:
        0.007963953 = weight(_text_:a in 1244) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1244,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1244, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1244)
        0.018437965 = product of:
          0.03687593 = sum of:
            0.03687593 = weight(_text_:de in 1244) [ClassicSimilarity], result of:
              0.03687593 = score(doc=1244,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.18992399 = fieldWeight in 1244, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1244)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The creation of services linking related information entities is an area that is attracting an ever increasing interest in the ongoing development of the World Wide Web in general, and of research-related information systems in particular. Currently, both practice and theory point at linking services as being a major domain for innovation enabled by digital communication of content. Publishers, subscription agents, researchers and libraries are all looking into ways to create added value by linking related information entities, as such presenting the information within a broader context estimated to be relevant to the users of the information. This is the first of two articles in D-Lib Magazine on this topic. This first part describes the current state-of-the-art and contrasts various approaches to the problem. It identifies static and dynamic linking solutions as well as open and closed linking frameworks. It also includes an extensive bibliography. The second part, SFX, a Generic Linking Solution describes a system that we have developed for linking in a hybrid working environment. The creation of services linking related information entities is an area that is attracting an ever increasing interest in the ongoing development of the World Wide Web in general, and of research-related information systems in particular. Although most writings on electronic scientific communication have touted other benefits, such as the increase in communication speed, the possibility to exchange multimedia content and the absence of limitations on the length of research papers, currently both practice and theory point at linking services as being a major opportunity for improved communication of content. Publishers, subscription agents, researchers and libraries are all looking into ways to create added-value by linking related information entities, as such presenting the information within a broader context estimated to be relevant to the users of the information.
    Type
    a
  9. Van de Sompel, H.; Hochstenbach, P.: Reference linking in a hybrid library environment : part 3: generalizing the SFX solution in the "SFX@Ghent & SFX@LANL" experiment (1999) 0.02
    0.016974341 = product of:
      0.02546151 = sum of:
        0.007023546 = weight(_text_:a in 1243) [ClassicSimilarity], result of:
          0.007023546 = score(doc=1243,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13482209 = fieldWeight in 1243, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1243)
        0.018437965 = product of:
          0.03687593 = sum of:
            0.03687593 = weight(_text_:de in 1243) [ClassicSimilarity], result of:
              0.03687593 = score(doc=1243,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.18992399 = fieldWeight in 1243, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1243)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This is the third part of our papers about reference linking in a hybrid library environment. The first part described the state-of-the-art of reference linking and contrasted various approaches to the problem. It identified static and dynamic linking solutions, open and closed linking frameworks as well as just-in-case and just-in-time linking. The second part introduced SFX, a dynamic, just-in-time linking solution we built for our own purposes. However, we suggested that the underlying concepts were sufficiently generic to be applied in a wide range of digital libraries. In this third part we show how this has been demonstrated conclusively in the "SFX@Ghent & SFX@LANL" experiment. In this experiment, local as well as remote distributed information resources of the digital library collections of the Research Library of the Los Alamos National Laboratory and the University of Ghent Library have been used as starting points for SFX-links into other parts of the collections. The SFX-framework has further been generalized in order to achieve a technology that can easily be transferred from one digital library environment to another and that minimizes the overhead in making the distributed information services that make up those libraries interoperable with SFX. This third part starts with a presentation of the SFX problem statement in light of the recent discussions on reference linking. Next, it introduces the notion of global and local relevance of extended services as well as an architectural categorization of open linking frameworks, also referred to as frameworks that are supportive of selective resolution. Then, an in-depth description of the generalized SFX solution is given.
    Type
    a
  10. Strobel, S.: ¬The complete Linux kit : fully configured LINUX system kernel (1997) 0.01
    0.012242593 = product of:
      0.03672778 = sum of:
        0.03672778 = product of:
          0.07345556 = sum of:
            0.07345556 = weight(_text_:22 in 8959) [ClassicSimilarity], result of:
              0.07345556 = score(doc=8959,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.46428138 = fieldWeight in 8959, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8959)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 7.2002 20:22:55
  11. Page, A.: ¬The search is over : the search-engines secrets of the pros (1996) 0.00
    0.00494665 = product of:
      0.014839949 = sum of:
        0.014839949 = weight(_text_:a in 5670) [ClassicSimilarity], result of:
          0.014839949 = score(doc=5670,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.28486365 = fieldWeight in 5670, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=5670)
      0.33333334 = coord(1/3)
    
    Abstract
    Covers 8 of the most popular search engines. Gives a summary of each and has a nice table of features that also briefly lists the pros and cons. Includes a short explanation of Boolean operators too
    Type
    a
  12. Swartout, B.; Patil, R.; Knight, K.; Russ, T.: Toward Distributed Use of Large-Scale Ontologies (1996) 0.00
    0.0045979903 = product of:
      0.01379397 = sum of:
        0.01379397 = weight(_text_:a in 4961) [ClassicSimilarity], result of:
          0.01379397 = score(doc=4961,freq=24.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.26478532 = fieldWeight in 4961, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4961)
      0.33333334 = coord(1/3)
    
    Abstract
    Large scale knowledge bases systems are difficult and expensive to construct. If we could share knowledge across systems, costs would be reduced. However, because knowledge bases are typically constructed from scratch, each with their own idiosyncratic structure, sharing is difficult. Recent research has focused on the use of ontologies to promote sharing. An ontology is a hierarchically structured set of terms for describing a domain that can be used as a skeletal foundation for a knowledge base. If two knowledge bases are built on a common ontology, knowledge can be more readily shared, since they share a common underlying structure. This paper outlines a set of desiderata for ontologies, and then describes how we have used a large-scale (50,000+ concept) ontology to develop a specialized, domain-specific ontology semi-automatically. We then discuss the relation between ontologies and the process of developing a system, arguing that to be useful, an ontology needs to be created as a "living document", whose development is tightly integrated with the system's. We conclude with a discussion of Web-based ontology tools we are developing to support this approach
  13. Kirriemuir, J.; Brickley, D.; Welsh, S.; Knight, J.; Hamilton, M.: Cross-searching subject gateways : the query routing and forward knowledge approach (1998) 0.00
    0.0041386643 = product of:
      0.012415992 = sum of:
        0.012415992 = weight(_text_:a in 1252) [ClassicSimilarity], result of:
          0.012415992 = score(doc=1252,freq=28.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23833402 = fieldWeight in 1252, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1252)
      0.33333334 = coord(1/3)
    
    Abstract
    A subject gateway, in the context of network-based resource access, can be defined as some facility that allows easier access to network-based resources in a defined subject area. The simplest types of subject gateways are sets of Web pages containing lists of links to resources. Some gateways index their lists of links and provide a simple search facility. More advanced gateways offer a much enhanced service via a system consisting of a resource database and various indexes, which can be searched and/or browsed through a Web-based interface. Each entry in the database contains information about a network-based resource, such as a Web page, Web site, mailing list or document. Entries are usually created by a cataloguer manually identifying a suitable resource, describing the resource using a template, and submitting the template to the database for indexing. Subject gateways are also known as subject-based information gateways (SBIGs), subject-based gateways, subject index gateways, virtual libraries, clearing houses, subject trees, pathfinders and other variations thereof. This paper describes the characteristics of some of the subject gateways currently accessible through the Web, and compares them to automatic "vacuum cleaner" type search engines, such as AltaVista. The application of WHOIS++, centroids, query routing, and forward knowledge to searching several of these subject gateways simultaneously is outlined. The paper concludes with looking at some of the issues facing subject gateway development in the near future. The paper touches on many of the issues mentioned in a previous paper in D-Lib Magazine, especially regarding resource-discovery related initiatives and services.
    Type
    a
  14. Dolin, R.; Agrawal, D.; El Abbadi, A.; Pearlman, J.: Using automated classification for summarizing and selecting heterogeneous information sources (1998) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 316) [ClassicSimilarity], result of:
          0.011945928 = score(doc=316,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 316, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=316)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval over the Internet increasingly requires the filtering of thousands of heterogeneous information sources. Important sources of information include not only traditional databases with structured data and queries, but also increasing numbers of non-traditional, semi- or unstructured collections such as Web sites, FTP archives, etc. As the number and variability of sources increases, new ways of automatically summarizing, discovering, and selecting collections relevant to a user's query are needed. One such method involves the use of classification schemes, such as the Library of Congress Classification (LCC) [10], within which a collection may be represented based on its content, irrespective of the structure of the actual data or documents. For such a system to be useful in a large-scale distributed environment, it must be easy to use for both collection managers and users. As a result, it must be possible to classify documents automatically within a classification scheme. Furthermore, there must be a straightforward and intuitive interface with which the user may use the scheme to assist in information retrieval (IR).
    Type
    a
  15. Sebastiani, F.: ¬A tutorial an automated text categorisation (1999) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 3390) [ClassicSimilarity], result of:
          0.011945928 = score(doc=3390,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 3390, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3390)
      0.33333334 = coord(1/3)
    
    Abstract
    The automated categorisation (or classification) of texts into topical categories has a long history, dating back at least to 1960. Until the late '80s, the dominant approach to the problem involved knowledge-engineering automatic categorisers, i.e. manually building a set of rules encoding expert knowledge an how to classify documents. In the '90s, with the booming production and availability of on-line documents, automated text categorisation has witnessed an increased and renewed interest. A newer paradigm based an machine learning has superseded the previous approach. Within this paradigm, a general inductive process automatically builds a classifier by "learning", from a set of previously classified documents, the characteristics of one or more categories; the advantages are a very good effectiveness, a considerable savings in terms of expert manpower, and domain independence. In this tutorial we look at the main approaches that have been taken towards automatic text categorisation within the general machine learning paradigm. Issues of document indexing, classifier construction, and classifier evaluation, will be touched upon.
  16. Hill, L.L.; Frew, J.; Zheng, Q.: Geographic names : the implementation of a gazetteer in a georeferenced digital library (1999) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 1240) [ClassicSimilarity], result of:
          0.01187196 = score(doc=1240,freq=40.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 1240, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1240)
      0.33333334 = coord(1/3)
    
    Abstract
    The Alexandria Digital Library (ADL) Project has developed a content standard for gazetteer objects and a hierarchical type scheme for geographic features. Both of these developments are based on ADL experience with an earlier gazetteer component for the Library, based on two gazetteers maintained by the U.S. federal government. We define the minimum components of a gazetteer entry as (1) a geographic name, (2) a geographic location represented by coordinates, and (3) a type designation. With these attributes, a gazetteer can function as a tool for indirect spatial location identification through names and types. The ADL Gazetteer Content Standard supports contribution and sharing of gazetteer entries with rich descriptions beyond the minimum requirements. This paper describes the content standard, the feature type thesaurus, and the implementation and research issues. A gazetteer is list of geographic names, together with their geographic locations and other descriptive information. A geographic name is a proper name for a geographic place and feature, such as Santa Barbara County, Mount Washington, St. Francis Hospital, and Southern California. There are many types of printed gazetteers. For example, the New York Times Atlas has a gazetteer section that can be used to look up a geographic name and find the page(s) and grid reference(s) where the corresponding feature is shown. Some gazetteers provide information about places and features; for example, a history of the locale, population data, physical data such as elevation, or the pronunciation of the name. Some lists of geographic names are available as hierarchical term sets (thesauri) designed for information retreival; these are used to describe bibliographic or museum materials. Examples include the authority files of the U.S. Library of Congress and the GeoRef Thesaurus produced by the American Geological Institute. The Getty Museum has recently made their Thesaurus of Geographic Names available online. This is a major project to develop a controlled vocabulary of current and historical names to describe (i.e., catalog) art and architecture literature. U.S. federal government mapping agencies maintain gazetteers containing the official names of places and/or the names that appear on map series. Examples include the U.S. Geological Survey's Geographic Names Information System (GNIS) and the National Imagery and Mapping Agency's Geographic Names Processing System (GNPS). Both of these are maintained in cooperation with the U.S. Board of Geographic Names (BGN). Many other examples could be cited -- for local areas, for other countries, and for special purposes. There is remarkable diversity in approaches to the description of geographic places and no standardization beyond authoritative sources for the geographic names themselves.
    Type
    a
  17. Powell, J.; Fox, E.A.: Multilingual federated searching across heterogeneous collections (1998) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 1250) [ClassicSimilarity], result of:
          0.01187196 = score(doc=1250,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 1250, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1250)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes a scalable system for searching heterogeneous multilingual collections on the World Wide Web. It details a markup language for describing the characteristics of a search engine and its interface, and a protocol for requesting word translations between languages.
    Type
    a
  18. Schmid, H.: Improvements in Part-of-Speech tagging with an application to German (1995) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 124) [ClassicSimilarity], result of:
          0.01187196 = score(doc=124,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 124, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=124)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper presents a couple of extensions to a basic Markov Model tagger (called TreeTagger) which improve its accuracy when trained on small corpora. The basic tagger was originally developed for English Schmid, 1994. The extensions together reduced error rates on a German test corpus by more than a third.
    Type
    a
  19. Hesse, W.; Verrijn-Stuart, A.: Towards a theory of information systems : the FRISCO approach (1999) 0.00
    0.0038316585 = product of:
      0.011494976 = sum of:
        0.011494976 = weight(_text_:a in 3059) [ClassicSimilarity], result of:
          0.011494976 = score(doc=3059,freq=24.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22065444 = fieldWeight in 3059, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3059)
      0.33333334 = coord(1/3)
    
    Abstract
    Information Systems (IS) is among the most widespread terms in the Computer Science field but a well founded, widely accepted theory of IS is still missing. With the Internet publication of the FRISCO report, the IFIP task group "FRamework of Information System COncepts" has taken a first step towards such a theory. Among the major achievements of this report are: (1) it builds on a solid basis formed by semiotics and ontology, (2) it defines a compendium of about 100 core IS concepts in a coherent and consistent way, (3) it goes beyond the common narrow view of information systems as pure technical artefacts by adopting an interdisciplinary, socio-technical view on them. In the autumn of 1999, a first review of the report and its impact was undertaken at the ISCO-4 conference in Leiden. In a workshop specifically devoted to the subject, the original aims and goals of FRISCO were confirmed to be still valid and the overall approach and achievements of the report were acknowledged. On the other hand, the workshop revealed some misconceptions, errors and weaknesses of the report in its present form, which are to be removed through a comprehensive revision now under way. This paper reports on the results of the Leiden conference and the current revision activities. It also points out some important consequences of the FRISCO approach as a whole.
  20. Yang, Y.; Liu, X.: ¬A re-examination of text categorization methods (1999) 0.00
    0.003793148 = product of:
      0.011379444 = sum of:
        0.011379444 = weight(_text_:a in 3386) [ClassicSimilarity], result of:
          0.011379444 = score(doc=3386,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 3386, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3386)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper reports a controlled study with statistical significance tests an five text categorization methods: the Support Vector Machines (SVM), a k-Nearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a Naive Bayes (NB) classifier. We focus an the robustness of these methods in dealing with a skewed category distribution, and their performance as function of the training-set category frequency. Our results show that SVM, kNN and LLSF significantly outperform NNet and NB when the number of positive training instances per category are small (less than ten, and that all the methods perform comparably when the categories are sufficiently common (over 300 instances).

Authors

Types

  • a 46
  • i 3
  • r 3
  • m 1
  • n 1
  • s 1
  • More… Less…

Classifications