Search (15 results, page 1 of 1)

  • × language_ss:"e"
  • × type_ss:"el"
  • × year_i:[1990 TO 2000}
  1. Priss, U.: Description logic and faceted knowledge representation (1999) 0.03
    0.025098871 = product of:
      0.100395486 = sum of:
        0.100395486 = sum of:
          0.06273703 = weight(_text_:aspects in 2655) [ClassicSimilarity], result of:
            0.06273703 = score(doc=2655,freq=2.0), product of:
              0.20938325 = queryWeight, product of:
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.046325076 = queryNorm
              0.29962775 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.5198684 = idf(docFreq=1308, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
          0.03765845 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
            0.03765845 = score(doc=2655,freq=2.0), product of:
              0.16222252 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046325076 = queryNorm
              0.23214069 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
      0.25 = coord(1/4)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  2. McDonough, J.P.: Epistemic engineering : some implications of the sociology of knowledge for information systems design (1994) 0.02
    0.02301891 = product of:
      0.09207564 = sum of:
        0.09207564 = weight(_text_:social in 3184) [ClassicSimilarity], result of:
          0.09207564 = score(doc=3184,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.49844736 = fieldWeight in 3184, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0625 = fieldNorm(doc=3184)
      0.25 = coord(1/4)
    
    Abstract
    For digital information systems' design to continue to flourish, it would appear that we may need to incorporate a view of the social in our design efforts. While there are a variety of disciplines and viewpoints within the social sciences which might assist information system designers in an effort to achieve a wider perspective in design, the remainder of this paper will focus on one that seems particularly well-suited for this role, the sociology of knowledge
  3. Gigliotti, C.: What children and animals know that we don't (1995) 0.02
    0.020346032 = product of:
      0.08138413 = sum of:
        0.08138413 = weight(_text_:social in 3290) [ClassicSimilarity], result of:
          0.08138413 = score(doc=3290,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.44056937 = fieldWeight in 3290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.078125 = fieldNorm(doc=3290)
      0.25 = coord(1/4)
    
    Abstract
    "In this essay, I offer several significant examples of research that deal with animals' and children's perception. These examples come from social science, cognitive thology, and several camps in cognitive science"
  4. Dillon, A.: What is the shape of information? : human factors in the development and use of digital libraries (1995) 0.01
    0.012938853 = product of:
      0.051755413 = sum of:
        0.051755413 = product of:
          0.10351083 = sum of:
            0.10351083 = weight(_text_:aspects in 3314) [ClassicSimilarity], result of:
              0.10351083 = score(doc=3314,freq=4.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.4943606 = fieldWeight in 3314, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3314)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    At Indiana, we are currentlxy investigating several aspects of electronic document usage that relate to the organization of information in digital environments. This work is collectively referred to under the heading: the perception of ahpe in information. The aim of this research is to identify aspects of presentation that affords users with a sense of location and order in electronic space, and to transfer these findings to developers of digital library applications. As well as empirical research, SLIS is involved in the development of a number of practical projects involving the campus libraries utilising sociotechnical approaches to design, but it is the research component of our efforts that will be emphasized here
  5. Dunning, A.: Do we still need search engines? (1999) 0.01
    0.010983714 = product of:
      0.043934856 = sum of:
        0.043934856 = product of:
          0.08786971 = sum of:
            0.08786971 = weight(_text_:22 in 6021) [ClassicSimilarity], result of:
              0.08786971 = score(doc=6021,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.5416616 = fieldWeight in 6021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6021)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Ariadne. 1999, no.22
  6. Strobel, S.: ¬The complete Linux kit : fully configured LINUX system kernel (1997) 0.01
    0.009414612 = product of:
      0.03765845 = sum of:
        0.03765845 = product of:
          0.0753169 = sum of:
            0.0753169 = weight(_text_:22 in 8959) [ClassicSimilarity], result of:
              0.0753169 = score(doc=8959,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.46428138 = fieldWeight in 8959, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8959)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16. 7.2002 20:22:55
  7. Birmingham, J.: Internet search engines (1996) 0.01
    0.009414612 = product of:
      0.03765845 = sum of:
        0.03765845 = product of:
          0.0753169 = sum of:
            0.0753169 = weight(_text_:22 in 5664) [ClassicSimilarity], result of:
              0.0753169 = score(doc=5664,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.46428138 = fieldWeight in 5664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5664)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10.11.1996 16:36:22
  8. Mayes, T.: Hypermedia and cognitive tools (1995) 0.01
    0.009149151 = product of:
      0.036596604 = sum of:
        0.036596604 = product of:
          0.07319321 = sum of:
            0.07319321 = weight(_text_:aspects in 3289) [ClassicSimilarity], result of:
              0.07319321 = score(doc=3289,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.3495657 = fieldWeight in 3289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3289)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Hypermedia and multimedia have been placed rather uncritically at the centre of current developments in learning technology. This paper seeks to ask some fundamental questions about how learning is best supported by hypermedia, and concludes that the most successful aspects are not those normally emphasized. A striking observation is that the best learning experience is enjoyed by hypermedia courseware authors rather that students. This is understandable from a constructivist view of learning, in which the key aim is to engage the learner in carrying out a task which leads to better comprehension. Deep learning is a by-product of comprehension. The paper discusses some approaches to designing software - cognitive tools for learning - which illustrate the constructivist approach
  9. Hirsch, C.C.: InterBRAIN : topographical atlas of the anatomy of the human CNS (1998) 0.01
    0.009149151 = product of:
      0.036596604 = sum of:
        0.036596604 = product of:
          0.07319321 = sum of:
            0.07319321 = weight(_text_:aspects in 822) [ClassicSimilarity], result of:
              0.07319321 = score(doc=822,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.3495657 = fieldWeight in 822, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=822)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The intricate 3D structure of the CNS lends itself to multimedia presentation, and is depicted here by way of dynamic 3D models that can be freely rotated, and in over 200 illustrations taken from the successful book "The Human Central Nervous System" by R. Nieuwenhuys et al, allowing the user to explore all aspects of this complex and fascinating subject. All this fully hyperlinked with over 2000 specialist terms. Optimal exam revision is guaranteed with the self-study option. For further information please contact: http://www.brainmedia.de/html/frames/pr/pr<BL>5/pr<BL>5<BL>02.html
  10. Enmark, R.: ¬The non-existent point : on the subject of defining library and information science and the concept of information (1998) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 2027) [ClassicSimilarity], result of:
              0.052280862 = score(doc=2027,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 2027, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2027)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The primary purpose of this essay if the following: to criticise a discipline-defining concept of information that has its poit of departure in the uncomplicated cognitive metaphor's 'subject/object relationship'. In my understanding, the cognitive channel metaphor is equal to the sender/receiver model, with the addition of the receiver's understanding, as both physical and mental aspects are used in one and the same metaphor: the 'subject' so to speak meets the 'object'. In this essay I will state: (1) that the point at which the 'subject' specifically meets the 'object' does not exist; (2) that the study of that which the non-existing point symbolises is impossible to describe on an general level without becoming trivial; (3) that it is not possible to find an obvious relationship between the sender's statement and the receiver's understanding; and (4) that the study of the 'subject' and the study of the 'object' exist in different methodological and theoretical dimensions: This leads to the conclusion that the cognitive channel metaphorical definition of the discipline of library and information science must preferably be abandoned and that this should take place such: (1) that consideration is taken to the empirical research that is carried out in library and information science and (2) that the research removes itself from the profession's legitimate ambitions for usefulness
  11. Electronic Dewey (1993) 0.01
    0.006276408 = product of:
      0.025105633 = sum of:
        0.025105633 = product of:
          0.050211266 = sum of:
            0.050211266 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.050211266 = score(doc=1088,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.30952093 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    Rez. in: Cataloging and classification quarterly 19(1994) no.1, S.134-137 (M. Carpenter). - Inzwischen existiert auch eine Windows-Version: 'Electronic Dewey for Windows', vgl. Knowledge organization 22(1995) no.1, S.17
  12. Priss, U.: Faceted knowledge representation (1999) 0.01
    0.005491857 = product of:
      0.021967428 = sum of:
        0.021967428 = product of:
          0.043934856 = sum of:
            0.043934856 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.043934856 = score(doc=2654,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:30:31
  13. Koch, T.; Ardö, A.; Brümmer, A.: ¬The building and maintenance of robot based internet search services : A review of current indexing and data collection methods. Prepared to meet the requirements of Work Package 3 of EU Telematics for Research, project DESIRE. Version D3.11v0.3 (Draft version 3) (1996) 0.01
    0.005228086 = product of:
      0.020912344 = sum of:
        0.020912344 = product of:
          0.041824687 = sum of:
            0.041824687 = weight(_text_:aspects in 1669) [ClassicSimilarity], result of:
              0.041824687 = score(doc=1669,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19975184 = fieldWeight in 1669, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1669)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    After a short outline of problems, possibilities and difficulties of systematic information retrieval on the Internet and a description of efforts for development in this area, a specification of the terminology for this report is required. Although the process of retrieval is generally seen as an iterative process of browsing and information retrieval and several important services on the net have taken this fact into consideration, the emphasis of this report lays on the general retrieval tools for the whole of Internet. In order to be able to evaluate the differences, possibilities and restrictions of the different services it is necessary to begin with organizing the existing varieties in a typological/ taxonomical survey. The possibilities and weaknesses will be briefly compared and described for the most important services in the categories robot-based WWW-catalogues of different types, list- or form-based catalogues and simultaneous or collected search services respectively. It will however for different reasons not be possible to rank them in order of "best" services. Still more important are the weaknesses and problems common for all attempts of indexing the Internet. The problems of the quality of the input, the technical performance and the general problem of indexing virtual hypertext are shown to be at least as difficult as the different aspects of harvesting, indexing and information retrieval. Some of the attempts made in the area of further development of retrieval services will be mentioned in relation to descriptions of the contents of documents and standardization efforts. Internet harvesting and indexing technology and retrieval software is thoroughly reviewed. Details about all services and software are listed in analytical forms in Annex 1-3.
  14. Payette, S.; Blanchi, C.; Lagoze, C.; Overly, E.A.: Interoperability for digital objects and repositories : the Cornell/CNRI experiments (1999) 0.01
    0.005228086 = product of:
      0.020912344 = sum of:
        0.020912344 = product of:
          0.041824687 = sum of:
            0.041824687 = weight(_text_:aspects in 1248) [ClassicSimilarity], result of:
              0.041824687 = score(doc=1248,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19975184 = fieldWeight in 1248, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1248)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    For several years the Digital Library Research Group at Cornell University and the Corporation for National Research Initiatives (CNRI) have been engaged in research focused on the design and development of infrastructures for open architecture, confederated digital libraries. The goal of this effort is to achieve interoperability and extensibility of digital library systems through the definition of key digital library services and their open interfaces, allowing flexible interaction of existing services and augmentation of the infrastructure with new services. Some aspects of this research have included the development and deployment of the Dienst software, the Handle System®, and the architecture of digital objects and repositories. In this paper, we describe the joint effort by Cornell and CNRI to prototype a rich and deployable architecture for interoperable digital objects and repositories. This effort has challenged us to move theories of interoperability closer to practice. The Cornell/CNRI collaboration builds on two existing projects focusing on the development of interoperable digital libraries. Details relating to the technology of these projects are described elsewhere. Both projects were strongly influenced by the fundamental abstractions of repositories and digital objects as articulated by Kahn and Wilensky in A Framework for Distributed Digital Object Services. Furthermore, both programs were influenced by the container architecture described in the Warwick Framework, and by the notions of distributed dynamic objects presented by Lagoze and Daniel in their Distributed Active Relationship work. With these common roots, one would expect that the CNRI and Cornell repositories would be at least theoretically interoperable. However, the actual test would be the extent to which our independently developed repositories were practically interoperable. This paper focuses on the definition of interoperability in the joint Cornell/CNRI work and the set of experiments conducted to formally test it. Our motivation for this work is the eventual deployment of formally tested reference implementations of the repository architecture for experimentation and development by fellow digital library researchers. In Section 2, we summarize the digital object and repository approach that was the focus of our interoperability experiments. In Section 3, we describe the set of experiments that progressively tested interoperability at increasing levels of functionality. In Section 4, we discuss general conclusions, and in Section 5, we give a preview of our future work, including our plans to evolve our experimentation to the point of defining a set of formal metrics for measuring interoperability for repositories and digital objects. This is still a work in progress that is expected to undergo additional refinements during its development.
  15. Dolin, R.; Agrawal, D.; El Abbadi, A.; Pearlman, J.: Using automated classification for summarizing and selecting heterogeneous information sources (1998) 0.00
    0.0039210645 = product of:
      0.015684258 = sum of:
        0.015684258 = product of:
          0.031368516 = sum of:
            0.031368516 = weight(_text_:aspects in 1253) [ClassicSimilarity], result of:
              0.031368516 = score(doc=1253,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.14981388 = fieldWeight in 1253, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1253)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Information retrieval over the Internet increasingly requires the filtering of thousands of heterogeneous information sources. Important sources of information include not only traditional databases with structured data and queries, but also increasing numbers of non-traditional, semi- or unstructured collections such as Web sites, FTP archives, etc. As the number and variability of sources increases, new ways of automatically summarizing, discovering, and selecting collections relevant to a user's query are needed. One such method involves the use of classification schemes, such as the Library of Congress Classification (LCC), within which a collection may be represented based on its content, irrespective of the structure of the actual data or documents. For such a system to be useful in a large-scale distributed environment, it must be easy to use for both collection managers and users. As a result, it must be possible to classify documents automatically within a classification scheme. Furthermore, there must be a straightforward and intuitive interface with which the user may use the scheme to assist in information retrieval (IR). Our work with the Alexandria Digital Library (ADL) Project focuses on geo-referenced information, whether text, maps, aerial photographs, or satellite images. As a result, we have emphasized techniques which work with both text and non-text, such as combined textual and graphical queries, multi-dimensional indexing, and IR methods which are not solely dependent on words or phrases. Part of this work involves locating relevant online sources of information. In particular, we have designed and are currently testing aspects of an architecture, Pharos, which we believe will scale up to 1.000.000 heterogeneous sources. Pharos accommodates heterogeneity in content and format, both among multiple sources as well as within a single source. That is, we consider sources to include Web sites, FTP archives, newsgroups, and full digital libraries; all of these systems can include a wide variety of content and multimedia data formats. Pharos is based on the use of hierarchical classification schemes. These include not only well-known 'subject' (or 'concept') based schemes such as the Dewey Decimal System and the LCC, but also, for example, geographic classifications, which might be constructed as layers of smaller and smaller hierarchical longitude/latitude boxes. Pharos is designed to work with sophisticated queries which utilize subjects, geographical locations, temporal specifications, and other types of information domains. The Pharos architecture requires that hierarchically structured collection metadata be extracted so that it can be partitioned in such a way as to greatly enhance scalability. Automated classification is important to Pharos because it allows information sources to extract the requisite collection metadata automatically that must be distributed.