Search (61 results, page 1 of 4)

  • × language_ss:"e"
  • × type_ss:"el"
  • × year_i:[2020 TO 2030}
  1. Collard, J.; Paiva, V. de; Fong, B.; Subrahmanian, E.: Extracting mathematical concepts from text (2022) 0.03
    0.02843627 = product of:
      0.042654403 = sum of:
        0.010387965 = weight(_text_:a in 668) [ClassicSimilarity], result of:
          0.010387965 = score(doc=668,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19940455 = fieldWeight in 668, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=668)
        0.032266438 = product of:
          0.064532876 = sum of:
            0.064532876 = weight(_text_:de in 668) [ClassicSimilarity], result of:
              0.064532876 = score(doc=668,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.33236697 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We investigate different systems for extracting mathematical entities from English texts in the mathematical field of category theory as a first step for constructing a mathematical knowledge graph. We consider four different term extractors and compare their results. This small experiment showcases some of the issues with the construction and evaluation of terms extracted from noisy domain text. We also make available two open corpora in research mathematics, in particular in category theory: a small corpus of 755 abstracts from the journal TAC (3188 sentences), and a larger corpus from the nLab community wiki (15,000 sentences).
    Type
    a
  2. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.02
    0.023747265 = product of:
      0.035620898 = sum of:
        0.007963953 = weight(_text_:a in 712) [ClassicSimilarity], result of:
          0.007963953 = score(doc=712,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 712, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 712) [ClassicSimilarity], result of:
              0.055313893 = score(doc=712,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 712, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=712)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.
    Type
    a
  3. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.02
    0.022477165 = product of:
      0.033715747 = sum of:
        0.012291206 = weight(_text_:a in 40) [ClassicSimilarity], result of:
          0.012291206 = score(doc=40,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23593865 = fieldWeight in 40, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=40)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
              0.04284908 = score(doc=40,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 40, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=40)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
    Type
    a
  4. Isaac, A.; Raemy, J.A.; Meijers, E.; Valk, S. De; Freire, N.: Metadata aggregation via linked data : results of the Europeana Common Culture project (2020) 0.02
    0.021092616 = product of:
      0.031638924 = sum of:
        0.0039819763 = weight(_text_:a in 39) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=39,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=39)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 39) [ClassicSimilarity], result of:
              0.055313893 = score(doc=39,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 39, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=39)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
  5. Hobert, A.; Jahn, N.; Mayr, P.; Schmidt, B.; Taubert, N.: Open access uptake in Germany 2010-2018 : adoption in a diverse research landscape (2021) 0.02
    0.016249297 = product of:
      0.024373945 = sum of:
        0.00593598 = weight(_text_:a in 250) [ClassicSimilarity], result of:
          0.00593598 = score(doc=250,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.11394546 = fieldWeight in 250, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=250)
        0.018437965 = product of:
          0.03687593 = sum of:
            0.03687593 = weight(_text_:de in 250) [ClassicSimilarity], result of:
              0.03687593 = score(doc=250,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.18992399 = fieldWeight in 250, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.03125 = fieldNorm(doc=250)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    This study investigates the development of open access (OA) to journal articles from authors affiliated with German universities and non-university research institutions in the period 2010-2018. Beyond determining the overall share of openly available articles, a systematic classification of distinct categories of OA publishing allowed us to identify different patterns of adoption of OA. Taking into account the particularities of the German research landscape, variations in terms of productivity, OA uptake and approaches to OA are examined at the meso-level and possible explanations are discussed. The development of the OA uptake is analysed for the different research sectors in Germany (universities, non-university research institutes of the Helmholtz Association, Fraunhofer Society, Max Planck Society, Leibniz Association, and government research agencies). Combining several data sources (incl. Web of Science, Unpaywall, an authority file of standardised German affiliation information, the ISSN-Gold-OA 3.0 list, and OpenDOAR), the study confirms the growth of the OA share mirroring the international trend reported in related studies. We found that 45% of all considered articles during the observed period were openly available at the time of analysis. Our findings show that subject-specific repositories are the most prevalent type of OA. However, the percentages for publication in fully OA journals and OA via institutional repositories show similarly steep increases. Enabling data-driven decision-making regarding the implementation of OA in Germany at the institutional level, the results of this study furthermore can serve as a baseline to assess the impact recent transformative agreements with major publishers will likely have on scholarly communication.
    Footnote
    Den Aufsatz begleitet ein interaktives Datensupplement, mit dem sich die OA-Anteile auf Ebene der Einrichtung vergleichen lassen. https://subugoe.github.io/oauni/articles/supplement.html. Die Arbeit entstand in Zusammenarbeit der BMBF-Projekte OAUNI und OASE der Förderlinie "Quantitative Wissenschaftsforschung". https://www.wihoforschung.de/de/quantitative-wissenschaftsforschung-1573.php.
    Type
    a
  6. Gil-Berrozpe, J.C.: Description, categorization, and representation of hyponymy in environmental terminology (2022) 0.02
    0.016249297 = product of:
      0.024373945 = sum of:
        0.00593598 = weight(_text_:a in 1004) [ClassicSimilarity], result of:
          0.00593598 = score(doc=1004,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.11394546 = fieldWeight in 1004, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1004)
        0.018437965 = product of:
          0.03687593 = sum of:
            0.03687593 = weight(_text_:de in 1004) [ClassicSimilarity], result of:
              0.03687593 = score(doc=1004,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.18992399 = fieldWeight in 1004, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1004)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Terminology has evolved from static and prescriptive theories to dynamic and cognitive approaches. Thanks to these approaches, there have been significant advances in the design and elaboration of terminological resources. This has resulted in the creation of tools such as terminological knowledge bases, which are able to show how concepts are interrelated through different semantic or conceptual relations. Of these relations, hyponymy is the most relevant to terminology work because it deals with concept categorization and term hierarchies. This doctoral thesis presents an enhancement of the semantic structure of EcoLexicon, a terminological knowledge base on environmental science. The aim of this research was to improve the description, categorization, and representation of hyponymy in environmental terminology. Therefore, we created HypoLexicon, a new stand-alone module for EcoLexicon in the form of a hyponymy-based terminological resource. This resource contains twelve terminological entries from four specialized domains (Biology, Chemistry, Civil Engineering, and Geology), which consist of 309 concepts and 465 terms associated with those concepts. This research was mainly based on the theoretical premises of Frame-based Terminology. This theory was combined with Cognitive Linguistics, for conceptual description and representation; Corpus Linguistics, for the extraction and processing of linguistic and terminological information; and Ontology, related to hyponymy and relevant for concept categorization. HypoLexicon was constructed from the following materials: (i) the EcoLexicon English Corpus; (ii) other specialized terminological resources, including EcoLexicon; (iii) Sketch Engine; and (iv) Lexonomy. This thesis explains the methodologies applied for corpus extraction and compilation, corpus analysis, the creation of conceptual hierarchies, and the design of the terminological template. The results of the creation of HypoLexicon are discussed by highlighting the information in the hyponymy-based terminological entries: (i) parent concept (hypernym); (ii) child concepts (hyponyms, with various hyponymy levels); (iii) terminological definitions; (iv) conceptual categories; (v) hyponymy subtypes; and (vi) hyponymic contexts. Furthermore, the features and the navigation within HypoLexicon are described from the user interface and the admin interface. In conclusion, this doctoral thesis lays the groundwork for developing a terminological resource that includes definitional, relational, ontological and contextual information about specialized hypernyms and hyponyms. All of this information on specialized knowledge is simple to follow thanks to the hierarchical structure of the terminological template used in HypoLexicon. Therefore, not only does it enhance knowledge representation, but it also facilitates its acquisition.
    Imprint
    Granada : Universidad de Granada
    Type
    a
  7. DeSilva, J.M.; Traniello, J.F.A.; Claxton, A.G.; Fannin, L.D.: When and why did human brains decrease in size? : a new change-point analysis and insights from brain evolution in ants (2021) 0.01
    0.00987554 = product of:
      0.01481331 = sum of:
        0.0056313644 = weight(_text_:a in 405) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=405,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 405, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=405)
        0.009181945 = product of:
          0.01836389 = sum of:
            0.01836389 = weight(_text_:22 in 405) [ClassicSimilarity], result of:
              0.01836389 = score(doc=405,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.116070345 = fieldWeight in 405, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=405)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
    Source
    Frontiers in ecology and evolution, 22 October 2021 [https://www.frontiersin.org/articles/10.3389/fevo.2021.742639/full]
    Type
    a
  8. Pankowski, T.: Ontological databases with faceted queries (2022) 0.00
    0.004560586 = product of:
      0.013681757 = sum of:
        0.013681757 = weight(_text_:a in 666) [ClassicSimilarity], result of:
          0.013681757 = score(doc=666,freq=34.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2626313 = fieldWeight in 666, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=666)
      0.33333334 = coord(1/3)
    
    Abstract
    The success of the use of ontology-based systems depends on efficient and user-friendly methods of formulating queries against the ontology. We propose a method to query a class of ontologies, called facet ontologies ( fac-ontologies ), using a faceted human-oriented approach. A fac-ontology has two important features: (a) a hierarchical view of it can be defined as a nested facet over this ontology and the view can be used as a faceted interface to create queries and to explore the ontology; (b) the ontology can be converted into an ontological database , the ABox of which is stored in a database, and the faceted queries are evaluated against this database. We show that the proposed faceted interface makes it possible to formulate queries that are semantically equivalent to $${\mathcal {SROIQ}}^{Fac}$$ SROIQ Fac , a limited version of the $${\mathcal {SROIQ}}$$ SROIQ description logic. The TBox of a fac-ontology is divided into a set of rules defining intensional predicates and a set of constraint rules to be satisfied by the database. We identify a class of so-called reflexive weak cycles in a set of constraint rules and propose a method to deal with them in the chase procedure. The considerations are illustrated with solutions implemented in the DAFO system ( data access based on faceted queries over ontologies ).
    Type
    a
  9. Kahlawi, A,: ¬An ontology driven ESCO LOD quality enhancement (2020) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 5959) [ClassicSimilarity], result of:
          0.011945928 = score(doc=5959,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 5959, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5959)
      0.33333334 = coord(1/3)
    
    Abstract
    The labor market is a system that is complex and difficult to manage. To overcome this challenge, the European Union has launched the ESCO project which is a language that aims to describe this labor market. In order to support the spread of this project, its dataset was presented as linked open data (LOD). Since LOD is usable and reusable, a set of conditions have to be met. First, LOD must be feasible and high quality. In addition, it must provide the user with the right answers, and it has to be built according to a clear and correct structure. This study investigates the LOD of ESCO, focusing on data quality and data structure. The former is evaluated through applying a set of SPARQL queries. This provides solutions to improve its quality via a set of rules built in first order logic. This process was conducted based on a new proposed ESCO ontology.
    Type
    a
  10. Machado, L.; Martínez-Ávila, D.; Barcellos Almeida, M.; Borges, M.M.: Towards a moderate realistic foundation for ontological knowledge organization systems : the question of the naturalness of classifications (2023) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 894) [ClassicSimilarity], result of:
          0.011945928 = score(doc=894,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 894, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=894)
      0.33333334 = coord(1/3)
    
    Abstract
    Several authors emphasize the need for a change in classification theory due to the influence of a dogmatic and monistic ontology supported by an outdated essentialism. These claims tend to focus on the fallibility of knowledge, the need for a pluralistic view, and the theoretical burden of observations. Regardless of the legitimacy of these concerns, there is the risk, when not moderate, to fall into the opposite relativistic extreme. Based on a narrative review of the literature, we aim to reflectively discuss the theoretical foundations that can serve as a basis for a realist position supporting pluralistic ontological classifications. The goal is to show that, against rather conventional solutions, objective scientific-based approaches to natural classifications are presented to be viable, allowing a proper distinction between ontological and taxonomic questions. Supported by critical scientific realism, we consider that such an approach is suitable for the development of ontological Knowledge Organization Systems (KOS). We believe that ontological perspectivism can provide the necessary adaptation to the different granularities of reality.
    Type
    a
  11. ChatGPT : Optimizing language models for dalogue (2022) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 836) [ClassicSimilarity], result of:
          0.01187196 = score(doc=836,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 836, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=836)
      0.33333334 = coord(1/3)
    
    Abstract
    We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.
  12. Lund, B.D.: ¬A chat with ChatGPT : how will AI impact scholarly publishing? (2022) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 850) [ClassicSimilarity], result of:
          0.01187196 = score(doc=850,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 850, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=850)
      0.33333334 = coord(1/3)
    
    Abstract
    This is a short project that serves as an inspiration for a forthcoming paper, which will explore the technical side of ChatGPT and the ethical issues it presents for academic researchers, which will result in a peer-reviewed publication. This demonstrates that capacities of ChatGPT as a "chatbot" that is far more advanced than many alternatives available today and may even be able to be used to draft entire academic manuscripts for researchers. ChatGPT is available via https://chat.openai.com/chat.
  13. Shiri, A.; Kelly, E.J.; Kenfield, A.; Woolcott, L.; Masood, K.; Muglia, C.; Thompson, S.: ¬A faceted conceptualization of digital object reuse in digital repositories (2020) 0.00
    0.003793148 = product of:
      0.011379444 = sum of:
        0.011379444 = weight(_text_:a in 48) [ClassicSimilarity], result of:
          0.011379444 = score(doc=48,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 48, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=48)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we provide an introduction to the concept of digital object reuse and its various connotations in the context of current digital libraries, archives, and repositories. We will then propose a faceted categorization of the various types, contexts, and cases for digital object reuse in order to facilitate understanding and communication and to provide a conceptual framework for the assessment of digital object reuse by various cultural heritage and cultural memory organizations.
    Type
    a
  14. Hausser, R.: Grammatical disambiguation : the linear complexity hypothesis for natural language (2020) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 22) [ClassicSimilarity], result of:
          0.011262729 = score(doc=22,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 22, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=22)
      0.33333334 = coord(1/3)
    
    Abstract
    DBS uses a strictly time-linear derivation order. Therefore the basic computational complexity degree of DBS is linear time. The only way to increase DBS complexity above linear is repeating ambiguity. In natural language, however, repeating ambiguity is prevented by grammatical disambiguation. A classic example of a grammatical ambiguity is the 'garden path' sentence The horse raced by the barn fell. The continuation horse+raced introduces an ambiguity between horse which raced and horse which was raced, leading to two parallel derivation strands up to The horse raced by the barn. Depending on whether the continuation is interpunctuation or a verb, they are grammatically disambiguated, resulting in unambiguous output. A repeated ambiguity occurs in The man who loves the woman who feeds Lucy who Peter loves., with who serving as subject or as object. These readings are grammatically disambiguated by continuing after who with a verb or a noun.
    Type
    a
  15. Hausser, R.: Language and nonlanguage cognition (2021) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 255) [ClassicSimilarity], result of:
          0.011262729 = score(doc=255,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 255, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=255)
      0.33333334 = coord(1/3)
    
    Abstract
    A basic distinction in agent-based data-driven Database Semantics (DBS) is between language and nonlanguage cognition. Language cognition transfers content between agents by means of raw data. Nonlanguage cognition maps between content and raw data inside the focus agent. {\it Recognition} applies a concept type to raw data, resulting in a concept token. In language recognition, the focus agent (hearer) takes raw language-data (surfaces) produced by another agent (speaker) as input, while nonlanguage recognition takes raw nonlanguage-data as input. In either case, the output is a content which is stored in the agent's onboard short term memory. {\it Action} adapts a concept type to a purpose, resulting in a token. In language action, the focus agent (speaker) produces language-dependent surfaces for another agent (hearer), while nonlanguage action produces intentions for a nonlanguage purpose. In either case, the output is raw action data. As long as the procedural implementation of place holder values works properly, it is compatible with the DBS requirement of input-output equivalence between the natural prototype and the artificial reconstruction.
  16. Roose, K.: ¬The brilliance and weirdness of ChatGPT (2022) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 853) [ClassicSimilarity], result of:
          0.011262729 = score(doc=853,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 853, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=853)
      0.33333334 = coord(1/3)
    
    Abstract
    A new chatbot from OpenAI is inspiring awe, fear, stunts and attempts to circumvent its guardrails.
    Type
    a
  17. Chessum, K.; Haiming, L.; Frommholz, I.: ¬A study of search user interface design based on Hofstede's six cultural dimensions (2022) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 856) [ClassicSimilarity], result of:
          0.011262729 = score(doc=856,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 856, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=856)
      0.33333334 = coord(1/3)
    
    Type
    a
  18. Jansen, B.; Browne, G.M.: Navigating information spaces : index / mind map / topic map? (2021) 0.00
    0.0035395343 = product of:
      0.010618603 = sum of:
        0.010618603 = weight(_text_:a in 436) [ClassicSimilarity], result of:
          0.010618603 = score(doc=436,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20383182 = fieldWeight in 436, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=436)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper discusses the use of wiki technology to provide a navigation structure for a collection of newspaper clippings. We overview the architecture of the wiki, discuss the navigation structure and pose the question: is the navigation structure an index, and if so, what type, or is it just a linkage structure or topic map. Does such a distinction really matter? Are these definitions in reality function based?
  19. Franke, T.; Zoubir, M.: Technology for the people? : humanity as a compass for the digital transformation (2020) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 830) [ClassicSimilarity], result of:
          0.010535319 = score(doc=830,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 830, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=830)
      0.33333334 = coord(1/3)
    
    Abstract
    How do we define what technology is for humans? One perspective suggests that it is a tool enabling the use of valuable resources such as time, food, health and mobility. One could say that in its cultural history, humanity has developed a wide range of artefacts which enable the effective utilisation of these resources for the fulfilment of physiological, but also psychological, needs. This paper explores how this perspective may be used as an orientation for future technological innovation. Hence, the goal is to provide an accessible discussion of such a psychological perspective on technology development that could pave the way towards a truly human-centred digital transformation.
    Content
    Vgl.: https://www.wirtschaftsdienst.eu/inhalt/jahr/2020/heft/13/beitrag/technology-for-the-people-humanity-as-a-compass-for-the-digital-transformation.html. DOI: 10.1007/s10273-020-2609-3.
    Type
    a
  20. Hofstadter, D.: Artificial neural networks today are not conscious, according to Douglas Hofstadter (2022) 0.00
    0.0032849626 = product of:
      0.009854888 = sum of:
        0.009854888 = weight(_text_:a in 626) [ClassicSimilarity], result of:
          0.009854888 = score(doc=626,freq=36.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18917176 = fieldWeight in 626, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=626)
      0.33333334 = coord(1/3)
    
    Content
    D&D: Why does President Obama not have a prime number of friends? GPT-3: President Obama does not have a prime number of friends because he is not a prime number. D&D: How many pieces of sound are there in a typical cumulonimbus cloud? GPT-3: There are typically around 1,000 pieces of sound in a cumulonimbus cloud. D&D: How many cumulus clouds are there in a mile-high vase? GPT-3: There are about 1,500 cumulus clouds in a mile-high vase. D&D: How many parts will a violin break into if a jelly bean is dropped on it? GPT-3: A violin will break into four parts if a jelly bean is dropped on it. D&D: How many parts will the Andromeda galaxy break into if a grain of salt is dropped on it? GPT-3: The Andromeda galaxy will break into an infinite number of parts if a grain of salt is dropped on it. D&D: How many parts will a violin break into if a jelly bean is dropped on it? GPT-3: A violin will break into four parts if a jelly bean is dropped on it.
    Type
    a

Types

  • a 48
  • p 9